Pan Tutorial

Charles Loomis

Abstract

Thistutorial introduces the pan compiler and pan configuration language. Those following the
tutorial should understand the purpose of the pan compiler and how the pan configuration lan-
guage allows a system administrator to describe the configuration of a machine. This tutorial
highlights all of the major features of the pan language: simple declarative syntax, type check-
ing, and extensive schema validation.

Table of Contents

1. Purpose of the Pan COMPILEr e 1
2. Invoking the Pan COmMPILEr ... e 2
3. TULOMTAl SCENGITO ...ceeetie ettt ettt e er e e n e e e e 4
4. Setting Configuration ValUESc.uuiiiiiiiie et e eanns 4
4.1. Properties and Primitive TYPES .. .c.uuiie ittt e e eean s 5
R = o 11 o S PPN 6
A3 EXEICISES ..ottt 6
5. SIMple TYPE CheCKingu i e 7
5.1. Binding Primitive TYpeSto PathSc..oiiiiiiiiiii e 7
5.2, USEr-DEfINEd TYPES . .cvneiiieiii et ettt et e e e et e e e eaaes 7
5.3. SCheMa DEfiNItiONcoeeriiiiii e 8
B4, EXEICISES ..eetiieeeet ettt ettt 10
6. Modular CONFIQUIBLIONiiee e e e et e e e e e e eees 10
6.1. INClUdE SEAEMENT ... eeeeriie e 10
6.2. SITUCLUIE TEMPIELES ... ettt et e e e e e e ea s 12
B.3. EXEICISES . eeiiieieet et 13
7. DEFAUIT VAIUES ..ottt 13
T.L EXEICISES ..ottt ettt ettt 14
8. Data Manipulation LANQUEBOEcieuueeueiii et e e e e e ee et e e et e e et e e eb e eanaaees 14
@01 £ (0] £ PP PP 14
B.2. VaADlES ... 15
8.3 FUNCLIONS ...ttt ettt e e e e et e e e e e e e eens 16
8.4 FIOW CONEIOL ...ttt ettt et e e e e e e e e e e e e e eeens 17
B0, EXEICISES . eetiieiiet et 18
9. Software CoNfIQUIBLIONc..uiiii e et e e e a et eeaaeaees 18
0.2, COMPONENESetneeee ittt ettt et et e et et e et e et e et e et e en e e e e e e e eaeenaens 18
9.2. NFS CompPONent SChEIMAceuiiiiieeie et et e e e e 19
9.3. Torque CompPOoNENt SCHEMAieun it e e e eanas 20
9.4. Schemas for Users and a Firewalloooiiiiiiiiiiii e 20
9.5. Component Configuration OrganiZationoceeuiieuiieinee e e 21
10. GeNEral Validalioncccvunieeiiiiie ittt 22
10.1. Advanced Parameter Validationooeevriiiiieriinieieiinee e 22
10.2. Validation of Correlated Configuration Parametersooovevvveiiieiineiiineenns 23
10.3. Cross-Maching Validationcooeuuuiiiiiiiiieieie e 25
FO.4. EXEICISES ..eevtiieeeeet e ettt ettt ettt e et e e et e e et 26
L1, CONCIUSIONS ...ttt ettt ettt e et e et e et e e e e e e e ennas 26

1. Purpose of the Pan Compiler

The pan compiler is a critical component of the quattor fabric management toolkit that translates a
high-level site configuration written by a system administrator in the pan configuration language to

Pan Tutorial

a machine-readable representation. The pan configuration language alows a system administrator
to define simultaneously both a site configuration and a schema for validation. One advantage the
pan language has over, for example, XML and XML Schema is that it is declarative language with
a simple, human-friendly syntax. In addition, the typing features of the pan language alow more
rigorous validation than XML Schema.

The name "compiler”" is actually a misnomer, as the pan compiler does much more than a smple
compilation. The processing progresses through five stages:

compilation Compile each individual template (file written in the pan configu-
ration language) into a binary format.

execution The statements in each object template are executed to generate a
partial tree of configuration information. The object template usu-
aly includes many other templates during the course of execution.
The generated tree contains all configuration information directly
specified by the system administrator.

insertion of defaults A passismade through the tree of configuration information during
which default values (if specified) areinserted for missing elements.
The tree of configuration information is complete after this stage.

validation The configuration information is frozen and all of the user-speci-
fied validationisrun. (Thisisactually implemented astwo separate
validation passesto allow circular validation dependencies between
machines.) Any invalid values or conditionswill cause the process-
ing to abort. If this stage finishes, then the configuration informa-
tion is complete and validated.

serialization Once theinformation is complete and valid, it is serialized to afile.
Usually, thisfileisinan XML format, but other representations are
available aswell.

The pan compiler runs through these stages for each "object” template. An "object" template is a
specia template that indicates a configuration tree that should be serialized; usually thereis one object
template for each physical machine. (Although with therise of virtualization, it may be one per logical
machine.)

2. Invoking the Pan Compiler

In order to experiment with the pan compiler, you must first install it; see the pan compiler manual
for instructions for downloading and installing an appropriate version. For thistutorial, the command
line interface is the most convenient method for invoking the compiler. However, there are other
mechanisms for invoking it directly from java or for integrating it with ant.

Once you have installed the compiler, make sure that it is correctly installed by using the commands:

$ panc --version
$ panc --help

The first command will return the version of the compiler; the second will give a complete list of all
of the available options.

Now create afile named hel | 0. t pl that contains the following:

obj ect tenplate hello;
"/ message' = 'hello';

Now compile this profile into the default XML representation and look at the output.

$ panc hello.tpl

Pan Tutorial

$ cat hello.xn

<?xm version="1.0" encodi ng="UTF-8""?>
<nlist format="pan" nane="profile">
<string nane="nessage">hel | o</string>
</nlist>

The output should look similar to what is shown above. Asyou can see the generated information has
asimple structure: atop-level element of type nlist, named "profile" with asingle string child, named
"message”. The value of the "message” is "hello”. If the output format is not specified, the default is
the "pan" XML style shown above, in which the element names are the pan primitive types and the
name attribute gives the associated name of the element in the pan template.

The pan compiler can generate output in three additional formats: xmldb, text, and dot. The xmldb
format is a format in which the pan names are used for XML elements and the type attribute gives
the element type. (If not specified, the default type is string.) The following shows the output for the
xmldb format.

$ panc --xm -style=xnidb hello.tpl

$ cat hello.xnl

<?xm version="1.0" encodi ng="UTF-8""?>
<profile format="xm db">

<nessage type="string">hel |l o</ nessage>
</profile>

This format is convenient if the resulting output will be processed with tools like XSLT or XQuery
because the XPath expression to use for a particular element is very close (but not identical) to the
pan language path.

For this tutorial, the most convenient representation will the the text format. This provides a clean
representation of the configuration tree on aterminal.

$ panc --xmnl-style=text hello.tpl
$ cat hello. txt
+-profile
$ nmessage : (string) 'hello

Note that the output file is named hel | 0. t xt and no longer hel | 0. xm . It provides the same
information as the XML formats, but is easier to understand visually.

The last style is the "dot" format. This format produces an output file that Graphviz [http:/
www.graphviz.org/] can use to generate a graph of the configuration information.

$ panc --xnl-style=dot hello.tpl

$ cat hello. dot

di graph "profile" {

bgcol or = bei ge

node [col or = bl ack, shape = box, fontnane=Hel vetica]
edge [color = black]

"/profile” [label = "profile"]

"/profil e/ message” [|abel = "nessage\n' hello "]
"/profile” -> "/profil el message"

}

Although the text is not very enlightening by itself, it can be used by Graphviz to generate a graph
of the configuration. Processing the above file with Graphviz produces the image shown in Figure 1,
“Graph of configuration produced by hello.tpl.”. The images in the tutorial have been produced with
the dot output of the compiler.

Figure 1. Graph of configuration produced by hel | o. t pl .

http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/

Pan Tutorial

3. Tutorial Scenario

Thistutorial will demonstrate how to define a configuration schema and populate it with values using
the pan configuration language. To keep thistutorial from becoming adry exercise of pan functionality,
asimplified but typical configuration scenario will be used. A system administrator has four machines
that need to be installed. One of the machineswill be an NFS server to provide a shared file system to
the other three machines. One of the machines will be the head node of a batch system and the other
two will be the batch system clients, or worker nodes.

The corresponding configuration schema will consist of both hardware and software aspects of the
configuration. For the hardware aspects, the schema will include information about the location of
the machine, RAM, CPUs, disks, and network interface cards (NICs). The software configuration will
include parameters for configuring an NFS server, NFS client, batch system head node, and batch
system client. The software configuration will also contain information about some related low-level
services such asafirewal.

The schema developed in this tutorial borrows ideas from the standard Quattor schema. However for
pedagogical reasons, the schemahereis simplified to demonstrate the essential pan language features.
At theend of thetutorial, readers should understand the core features of the pan configuration language
and be able to understand the standard Quattor schema. Additional work with other components of the
Quiattor system will be necessary to use Quattor to configure areal set of machines.

4. Setting Configuration Values

The pan configuration language is a declarative language that allows configuration parameters ar-
ranged in a hierarchical treeto be given values. At its simplest level, pan simply sets key/value pairs
where the keys can be arranged hierarchically. Consider initially the hardware information for the ma-
chines: location of the machine, RAM, CPUs, disks, and network interface cards (NI1Cs). One possible
way of specifying thisinformation in pan is the following:

obj ect tenplate nfsserver. exanple. org;
'/ har dwar e/ | ocat i on/ rack’
'/ hardwar e/ | ocati on/ sl ot'

'| BM4'
25;

"/ har dwar e/ r am 2048;

" [har dwar e/ cpu/ nodel ' "Intel Xeon';

" [har dwar e/ cpu/ speed'
" [har dwar e/ cpu/ ar ch’

" [har dwar e/ cpu/ cor es'
" [har dwar e/ cpu/ nunber'

"/ har dwar e/ di
"/ har dwar e/ di
"/ har dwar e/ di
"/ har dwar e/ di
"/ har dwar e/ di

c/ 0/ mac'
c/ 0/ pxebo
c/ 1/ mac'

"/ har dwar e/ ni
"/ har dwar e/ ni
"/ har dwar e/ ni

sks/i de/ O/ capacity'
sks/ i de/ 0/ boot"

sks/ide/ 0/ 1 abel'
sks/ide/ 1/ capacity'
sks/i de/ 1/ boot"

2.5;

' x86_64"
= 4,

2;

= 64,
= true;

= 'system;
= 1024;
= fal se;
= '01: 23: 45: ab: cd: 99’ ;
ot' = fal se;
' 01: 23: 45: ab: cd: 00" ;

" [har dwar e/ ni ¢/ 1/ pxeboot'

= true,

In this example, each assignment statement sets one value. On the left-hand side is the absolute path,
which must be asingle- or double-quoted string; the right-hand sideis the value to assign to that path.
All absolute paths must begin with aslash. Savethistothefilenf sser ver . exanpl e. org. t pl .

Pan Tutorial

Invoking the pan compiler on thiswill cause a configuration tree to be built by executing the assign-
ment statementsin order from the beginning to the end. The text representation of the compiler output
looks like:

$ panc --xm-style=text nfsserver.exanple.org
$ cat nfsserver. exanple.org.txt

+-profile
+- har dwar e
+-Ccpu
$ arch : (string) 'x86_64'
$ cores : (long) '4
$ nodel : (string) 'Intel Xeon'
$ nunber : (long) '2'
$ speed : (double) '2.5
+- di sks
+-ide
+-0
$ boot : (bool ean) 'true'
$ capacity : (long) '64'
$ label : (string) 'systen
+-1

$ boot : (bool ean) 'false'
$ capacity : (long) '1024
+-l ocation
$ rack : (string) 'I|BM4'
$ slot : (long) '25
+-nic
+0
$ mac : (string) 'O01:23:45:ab:cd: 99
$ pxeboot : (bool ean) 'false'

$ mac : (string) 'O01:23:45:ab:cd: 00
$ pxeboot : (bool ean) 'true'
$ ram: (long) '2048

showing how a machine with an dual-CPU machine with Intel Xeon chips running at 2.5 GHz, 2 GB
of RAM, two IDE disks, two NICs, and located in rack IBM04 in slot 25 could be represented. This
information could then be used by other parts of the Quattor toolkit (or any other tool for that matter) to
do some work based on this information, although the XML format is usually used when transmitting
the information to other tools.

Although this example should be fairly intuitive for most readers, there are a few subtleties to point
out. The first line of the example indicates that this file represents a "managed object” and should
produce an output file. If theobj ect modifier isleft out, then the file will compile but no output file
will be produced. The tutoria will explain the different types of templates later.

Noticethat it was not necessary to specify all of the parentsof aparticular path. For example, therewas
no assignment statement with the path / har dwar e. When assigning avalue to a particular path, pan
will automatically create the parents as necessary. In the pan language, the leaves of the tree (terminal
values) are called properties. All of the assignment statements in this example set properties. The
branches of thetree (collections) are generically called resources. The term element encompasses both
pan properties and resources.

4.1. Properties and Primitive Types

The properties can have any of the primitive typesthat pan supports: long, double, boolean, and string.
The syntax for writing literal valuesis the same as most modern programming languages. In addition
to the usual base-10 format for long literals, octal and hexadecimal literals can also be specified by
using aleading'0' or 'Ox’ respectively. For example, fifteen can bewrittenas15, 017, or Oxf . Double

Pan Tutorial

literals can be specified with or without an exponent. One particularity of panisthat al doubleliterals
must start with adigit. That is, . 2 isnot avalid double literal and must instead be written as 0. 2.

String valuesmay be specified with asingle-quoted, double-quoted, or aheredoc syntax. All characters
within a single-quoted string are taken literaly. For example, the string' no new | i ne\ n' will
contain a backslash and character n at the end of the string. The only exception is that a doubled
single quote represents a single literal quote within a single-quoted value. It is best practice to use
single-quoted strings to specify path values. In contrast, the double-quoted string "wi th a new
I'i ne\ n" will contain a new line character at the end. All of the usual c-style escape sequences are
supported. For long multi-line strings, the heredoc syntax may be used:

obj ect tenpl ate heredoc;

"/longstring' = <<EOCF;
This is a

long nultiline
string.

EOF

Thetoken after the << operator will mark the end of the multi-line string and can be chosen by the user.
The string will begin after the next new line in the source template and end before the line containing
the end token. The ending token must appear on aseparate line by itself; no other characters (including
whitespace) may appear on the line with the ending token.

4.2. Resources

There are two types of resources supported by pan: list and nlist. A list isan ordered list of elements
with the indexing starting at zero. In the above example, there are two lists/ har dwar e/ di sks/
i de and/ har dwar e/ ni c. The order of alist is significant and maintained in the serialized repre-
sentation of the configuration. An nlist (named list) associates a name with an element; these are also
known as hashes or associative arrays. One nlist in the above example is/ har dwar e/ cpu, which
hasar ch, cor es, nodel , nunber, and speed as children. Note that the order of an nlist is not
significant and that the order specified in the template fileis not preserved in the serialized version of
the configuration. Although the algorithm for ordering the children of an nlist in the serialized file is
not specified, the pan compiler guarantees a consistent ordering of the same children from one com-
pilation to the next.

Within a given path, lists and nlists can be distinguished by the names of their children. Lists always
have children whose names are valid long literals. In the following example, /mylistisalist with three
children:

obj ect tenplate nylist;

"/nylist/0Q" = 'decimal index';
"/nmylist/01l' = '"octal index';
"Inylist/0Ox3" = "'hexadeci nal index';

Theindices can be specified in decimal, octal, or hexadecimal. The names of children in an nlist must
begin with aletter or underscore.

4.3. Exercises

1. Pan creates parent resources automatically inferring the type of resource (list or nlist) from the path
itself. What happensif two assignment statements implicitly define different types for aresource?

2. What happensif alistisdefined witha"hole" init? Try defining and compiling atemplatein which
alist only has the third element (index = 2) defined.

3. What happens if you redefine the same path later in the same template? Which value appears in
the serialized file?

Pan Tutorial

4. What happens if you redefine the same path later in the same template but assign a value with a
different primitive type? What happens if you define the path to the special literal undef between
those two assignments?

5. What happensif you definethe/ har dwar e/ cpu/ nunber to be aboolean or string value?

6. Can you delete a property or resource that was previously defined in the template? Hint: try using
the special literal nul I .

7. What happensif you try to set apath that does not begin with aslash?

5. Simple Type Checking

If youworked through the exercises of the previous section, you will have discovered that although you
have an intuitive idea of what type aparticular path should contain (e.g./ har dwar e/ cpu/ nunber

should be positive long), the pan compiler does not. Downstream tools to configure a machine will
likely expect certain valuesto have certain types and will produce errors or erroneous configurations
if the correct typeis not used. One of the strengths of the pan language is to specify constraints on the
values to detect problems before configurations are deployed to machines.

5.1. Binding Primitive Types to Paths

At the most basic level, a system administrator can tell the pan compiler that a particular ele-
ment must be a particular type. This is done with the bi nd statement. To tell the compiler that
the path / har dwar e/ cpu/ nunber must be a long value, add the following statement to the
nf sserver. exanpl e. or g example.

bi nd '/ hardwar e/ cpu/ nunmber' = | ong;

This statement can appear anywherein thefile; all of the specified constraintswill be verified after the
complete configuration is built. Setting this path to a value that is not along or not setting the value
at all will cause the compilation to fail.

Theabove constraint only does part of thework though; the value could still be set to zero or anegative
value without having the compiler complain. Pan also allows a range to be specified for primitive
values. Changing the statement to the following:

bi nd '/ hardwar e/ cpu/ number' = long(1..);

will require that the value be a positive long value. A valid range can have the minimum value, maxi-
mum value, or both specified. A rangeisawaysinclusive of the endpoint values. The endpoint values
must be long literal values. A range specified asasingle valueindicates an exact match (e.g. 3 isshort-
hand for 3. . 3). A range can be applied to a long, double, or string value. For strings, the range is
applied to the length of the string. A range cannot be applied to boolean values.

5.2. User-Defined Types

While one could imagine adding bind statements for every named element within aconfiguration tree,
this would quickly become tedious. To avoid unnecessary duplication, pan allows user-defined types
both for properties and resources. One could define, for example, a type for a port number and then
privileged and unprivileged ports:

type port = long(0..65535);
type priv_port = port(..1024);
type unpriv_port = port(1025..);

The above statements would define three new types: port, priv_port, and unpriv_port. Note that once a
type has been defined, it may be used anywherein the pan language that nativetypes are allowed. Here
the privileged and unprivileged port types are defined in term of port. The order is significant here;
avalid type definition can only reference types that have been previoudly defined. Defining "alias’

Pan Tutorial

types like this can reduce errors by enforcing consistent constraints and improve the readability of the
code if appropriate names are chosen.

User-defined types can be bound to a path using exactly the same syntax asfor binding with primitive
types. Once again order is significant; referenced types must be defined before abi nd statement is
executed.

Homogeneous resources can be easily defined by adding brackets or braces to a type definition:

type port_list = port[];
type port_nlist = port{};

where these define alist or nlist, respectively. Empty brackets or braces means that there are no re-
strictions on the size of the resource; the resources may also be empty. If the brackets or braces contain
arange, the constraint is applied to the size of the resource. For example, | ong[3] would bealong
list with exactly three children and | ong[1. .] would be along list with one or more children.

One of the most common user-defined types is that of arecord. A record is an nlist with specific,
named children defined. For example, one can specify a disk_info type to define the disk information
inthenf sserver . exanpl e. or g example:

type disk = {
"label' ? string
‘capacity' : long(l..)
"boot' : bool ean

b

Thistype definition would be an nlist with three children named | abel , capaci ty,andboot . The
| abel isan optional child (indicated by the question mark) and may or may not exist. However, if
it does exist then the given type constraint must be met. The other two are required children and they
must exist for the type definition to validate correctly. Children with other names are not permitted
by this type definition.

Occasionaly it isuseful to define an open or extensible record that allows children not specified inthe
type definition to exist. Imagine that for the machine location that ther ack and sl ot informationis
required, but other information could be added as well. The following record definition:

type location = extensible {

"rack' : string

"slot' : long(0..50)
1
would allow someone to add information like the building number without violating this type's con-
straints.

5.3. Schema Definition

Using type definitions for properties and resources, one can build a global schema for a con-
figuration. Using a global schema is extremely important when using pan to define configura-
tions because it allows extensive compile-time checking of the configuration, avoiding having to
cleanup the mess that can result from deploying a bad configuration. The following revisits the
nf sserver. exanpl e. or g configuration by adding a full schema:

obj ect tenplate nfsserver. exanple. org;

type location = extensible {

"rack' : string
"slot' : long(0..50)
b
type cpu = {

Pan Tutorial

' nodel '
' speed’
"arch'
‘cores' : |
" nunber'

b

type disk
"| abel"’
' capacity'
' boot"

}s

type disks =

"ide'

'scsi

b

? di

type nic
' mac'
' pxeboot '

b

=

type hardware

| ocation'
"rani
' epu’
" di sks'
"nic'

b

type root
" har dwar e'

b
bind '/

= {

? string

=

string
doubl e(0..)
string

ong(1l..)
long(1l..)

long(1l..)

bool ean

{

2 di sk[]

sk{}

string

bool ean

=

| ocation

 ong(O0..)
cpu

di sks
nicl]

har dwar e

root;

"/ har dwar e/ | ocati on/ r ack’
"/ hardwar e/ | ocati on/ sl ot

"/ har dwar e/ r am 2048

" [har dwar e/ cpu/ nodel ' '
"/ har dwar e/ cpu/ speed
" [har dwar e/ cpu/ ar ch’
"/ har dwar e/ cpu/ cor es
' [har dwar e/ cpu/ nunber'

'/ hardware/d
'/ hardware/d
'/ hardware/d
'/ hardware/d
'/ hardware/d
c/0/mac' ="'
c/ 0/ pxeboot'
c/ 1/ mac'
c/ 1/ pxeboot'

"/ har dwar e/ ni
"/ har dwar e/ ni
"/ har dwar e/ ni
"/ har dwar e/ ni

2
"X
4

sk/ide/ 0/ capacity'
sk/i de/ 0/ boot"'
sk/ide/ 0/ abel
sk/ide/ 1/ capacity'
sk/i de/ 1/ boot'

"1 BMD4' ;
25;

I nt el
. 5;
86_64";

Xeon' ;

2;

= 64,
= true;
'systemn ;

1024;
= fal se;

01: 23: 45: ab: cd: 99' ;

= fal se;

01: 23: 45: ab: cd: 00" ;

= true,

Pan Tutorial

The series of type definitions progressively define the full schema from the lowest to highest levels.
Note that there isonly one bi nd statement in this configuration. Thisbi nd statement binds the root
resource, specified by the path' /', to the root of the schema. All of the other definitions are bound
implicitly through this one statement.

5.4. Exercises

1. Determine what happens if the type definitions are specified in the wrong order.

2. Verify that the type definitions are fully applied to thenf sser ver . exanpl e. or g example by
specifying someinvalid values.

3. Also verify that adding paths outside of the schemais caught by the validation.
4. Although the schemainthelast nf sser ver . exanpl e. or g templateis much morerestrictive,
there are till several places where simple typos or inconsistent values could produce an invalid

configuration. Where are they? What would you want to do to fix them?

5. What happensif you bind several different types to the same path?

6. Modular Configuration

6.1. Include Statement

So far only the hardware configuration and schema for one machine has been defined with the
nf sserver. exanpl e. or g configuration. One could imagine just doing a cut and paste to cre-
ate the other three machines in our scenario. While this will work, the global site configuration will
quickly become unwieldy and error-prone. In particular the schemais something that should be shared
between all or many machines on asite. Multiple copies means multiple copiesto keep up-to-date and
multiple chances to introduce errors.

To encourage reuse of the configuration and to reduce maintenance effort, pan allows one template
to include another (with some limitations). For example, the above schema can be pulled into another
template (named conmon/ schena. t pl) and included in the main object template.

decl aration tenpl ate comon/schemns;

type location = extensible {

"rack' : string
"slot'" : long(0..50)
b
type cpu = {
"nmodel ' : string
'speed' : double(0..)
"arch' : string
‘cores' : long(l..)
"nunber' : long(l..)
b

type disk = {
"label' ? string
"capacity' : long(1l..)
"boot' : bool ean

b

10

Pan Tutorial

type disks = {
"ide' ? disk[]
"scsi' ? disk{}

b
type nic = {
"mac' @ string
' pxeboot' : bool ean
b
type hardware = {
"l ocation' : location
"rami : 1ong(0..)
‘cpu' @ cpu
"di sks' : disks
‘nic' : nic[]

b

type root = {
"hardware' : hardware

b
The main object template then becomes:;

obj ect tenplate nfsserver. exanple. org;
i nclude { 'common/schema' };
bind '/' = root;

"/ har dwar e/ | ocati on/ r ack’
"/ hardwar e/ | ocati on/ sl ot'

"1 BMD4' ;
25;

"/ hardware/ ram = 2048;

" [har dwar e/ cpu/ nodel ' "Intel Xeon';
" [har dwar e/ cpu/ speed' 2.5;

"/ hardwar e/ cpu/arch' = 'x86_64";

" [har dwar e/ cpu/ cor es' 4,

" [har dwar e/ cpu/ nunber' = 2;

"/ har dwar e/ di sk/i de/ O/ capacity' = 64,
" [har dwar e/ di sk/ i de/ 0/ boot' = true;

"/ hardwar e/ di sk/ide/ 0/l abel' = "'system;

'/ har dwar e/ di sk/i de/ 1/ capacity' = 1024;

"/ har dwar e/ di sk/ i de/ 1/ boot' = fal se;

"/ hardwar e/ nic/ 0/ mac' = '01:23:45: ab: cd: 99" ;
' [har dwar e/ ni ¢/ 0/ pxeboot' = fal se;

"/ hardwar e/ nic/ 1/ mac' = '01:23:45: ab: cd: 00" ;
"/ har dwar e/ ni ¢/ 1/ pxeboot' = true;

There are three important changes to point out.

First, there is a new pan statement in the nf sser ver. exanpl e. or g template to include the
schema. The i ncl ude statement takes the name of the template to include as a string; the braces
are mandatory. If the template is not included directly on the command line, then the compiler will
search the loadpath for the template. If the loadpath is not specified, then it defaults to the current
working directory.

11

Pan Tutorial

Second, the schema has been pulled out into a separate file. The first line of that schema template
isnow marked as adecl ar at i on template. Such a template can only include type declarations.
(Also variable and function declarations aswe will seelater.) Such atemplate will beincluded at most
once when building an object; all inclusions after thefirst will beignored. This allows many different
template to reference type (and function) declarations that they use without having to worry about
accidentally redefining them.

Third, the schema template name is cormon/ schena and must be located in afile called com

non/ schema. t pl ; that is, it must be in a subdirectory of the current directory called common.
Thisiscalled namespacing and allows the templates that make up a configuration to be organized into
subdirectories. For the few templates that are used in this tutorial, namespacing is not critical. It is,
however, critical for real sitesthat arelikely to have hundreds or thousands of templates. Note that the
hierarchy for namespacesiscompl etely independent of the hierarchy used in the configuration schema.

Pulling out common declarations and help maintain coherence between different managed machines
and reduce the overall size of the configuration. There are however, more mechanisms to reduce du-
plication.

6.2. Structure Templates

Sites usually buy many identical machines in a single purchase, so much of the hardware configura-
tion for those machines is the same. Another mechanism that can be exploited to reuse configuration
parametersisast r uct ur e template. Such a template defines an nlist that is initially independent
of the configuration tree itself. For our scenario, let us assume that the four machines have identical
RAM, CPU, and disk configurations; the NIC and location information is different for each machine.
The following template pulls out the common informationinto ast r uct ur e template:

structure tenpl ate comon/ machi ne/i bm server - nodel - 123;

"ram = 2048;

"cpu/ nmodel’ = 'lIntel Xeon';
' cpu/ speed’ = 2.5;
'cpu/arch' = 'x86_64";
'cpu/cores' = 4;

cpu/ number' = 2;
" di sk/ide/0/capacity' = 64;

" di sk/ide/ 0/ boot' = true;
"disk/ide/0/l abel' = "'system;
"di sk/ide/1l/capacity' = 1024,

" di sk/ide/ 1/ boot' = fal se;

"l ocation' = undef;
'nic' = undef;

The structure template is not rooted into the configuration (yet) and hence al of the paths in the
assignment statements must be relative; that is, they do not begin with aslash. Also, thel ocat i on
and ni ¢ children were set to undef . These are the values that will vary from machine to machine,
but we want to ensure that anyone using this template sets those values. If someone uses thistemplate,
but forgetsto set those val ues, the compiler will abort the compilation with an error. Theundef value
may not appear in afinal configuration.

How is this used in the machine configuration? The i ncl ude statement will not work because we
must indicate where the configuration should be rooted. The answer isto use an assignment statement
along with the cr eat e function.

obj ect tenplate nfsserver. exanple. org;

12

Pan Tutorial

i nclude { 'conmon/schema' };

bind '/' = root;

"/ hardware' = create(' cormon/ machi ne/i bm server-nodel -123");
"/ hardwar e/l ocation/rack' = 'I|BWM4';

"/ hardwar e/l ocation/slot' = 25;

"/ hardware/ ni c/ 0/ mac' = '01: 23: 45: ab: cd: 99’

" [har dwar e/ ni ¢/ 0/ pxeboot' = fal se

"/ hardware/ nic/ 1/ mac' = '01: 23: 45: ab: cd: 00’

"/ har dwar e/ ni ¢/ 1/ pxeboot' = true;

Finally, the machine configuration contains only values that depend on the machine itself with com-
mon values pulled in from shared templ ates.

Although the example here uses the hardware configuration, in reality it can be used for any subtree

that isinvariant or nearly-invariant. One can even reuse the same structure template many timesin the
same object just be creating a new instance and assigning it to a particular part of the tree.

6.3. Exercises

1. What happensif you put an absolute assignment statement in a structure template?
2. What happensif you put arelative assignment statement in an object template?

3. Come up with an example where you might want to reuse the same structure templ ate several times
in the same object.

4. What happensif you try to include an object template from another object, declaration, or structure
template?

5. What happensif you try to include a structure template with an include statement?

7. Default Values

L ooking again at the nfsserver.example.org configuration, there are a couple of placeswhere we could
hope to use default values. The pxeboot and boot flagsin the nic and disk type definitions could
use default values. In both cases, at most one value will besettot r ue; all other values will be set to
f al se. Another place one might want to use default valuesisin the cpu type; perhaps we would like
to have nunber and cor es both default to 1 if not specified.

Pan allowstype definitions to contain default values. For example, to change the three type definitions
mentioned above:

type cpu = {
"nmodel ' : string
'speed' : double(0..)
"arch' : string
‘cores' : long(l..) =1
"nunber’ : long(1l..) =1
b
type nic = {
' mac’ string

13

Pan Tutorial

' pxeboot' : boolean = false

b

type disk = {
"label' ? string
‘capacity' : long(1l..)
"boot' : boolean = false

b

With these definitions, the lineswhich set thepxeboot andboot flagsto false can beremoved from
the configuration and the compiler will still produce the same result. The default value will only be
used if the corresponding element does not exist or hastheundef value after all of the statementsfor
an object have been executed. Consequently, a value that has been explicitly defined will always be
used in preference to the default. Although one can set adefault value for an optional field in arecord,
it will have an effect only if the value was explicitly set to undef .

The default values must be a compile time constants.

7.1. Exercises

1. Update the schematemplate using the type definitions with defaults. Remove the unnecessary lines
inthenf sser ver . exanpl e. or g template and ensure that the defaults are correctly used.

2. Canyou set adefault valueto aniillegal value? When istheillegal value detected?
3. Canyou set adefault valueto undef ?

4. Set adefault value for an optional field and see if/when thisis used?

8. Data Manipulation Language

Although a declarative language has many benefits, there are times when values need to be cal culated
or verified based on some algorithm. To alow thisin the pan language without giving up the funda-
mental declarative nature of the language, pan allows a Data Manipulation Language (DML) block to
appear in most placeswhere aliteral value can appear. The DML block can use information contained
in global variables, in the current object, or in other objects to calculate a value. This makes the lan-
guage much more flexible without giving up the simplicity of the overall pan syntax.

A DML block is a sequence of one or more expressions, where every expression returns avalue. The
valuefor an entire DML block isthevalue of thelast executed statement. The DML syntax lookslikea
simplified version of c. The DML block can only return avalue and cannot directly or indirectly change
the configuration tree nor the global state except by assigning the return value to a path or variable.

8.1. Operators

DML has a complete set of operators for arithmetic, bit operations, and comparison operators. These
are identical to those available in Java, including that the plus operator (+) works also to concatenate
strings. See the pan language reference for acomplete list of all of the operators. Where necessary ina
calculation, DML will promote long values to doubles; no other automatic conversions are performed.

"/resultl' = 147 + 10; # will be 157
"/result2' = 153 == (150 + 3); # will be true
"fresult3 = {

5 + 5

20 % 5;

6 * 5.0;

14

Pan Tutorial

}; # wll be 30.0

In assignment statements, single expressions can be used after the equal sign without brackets. DML
blocks with multiple statements must be surrounded by braces. DML blocks may appear as default
valuesin type definitionsif the block evaluatesto a constant, compile-time value.

8.2. Variables

There are three types of variablesin the pan language. Local variables defined and used withinaDML
block, global variables defined by thevar i abl e statement and automatic variables provided by the
compiler.

Local variables can be defined within a DML block simply by assigning a value to them. There is
no need to declare the variable before assigning a value; the variable must have been defined before
using it on the right-side of an expression.

"/result' ={

X = 10;

y = 20;

z = 30;

X +y - z;

}; # will be zero

Oncethe DML block hasfinished, all of the local variables are destroyed and are no longer accessible.
Global variables can be defined by using the pan var i abl e statement. For example,
variable X = "hello world!";

will defineaglobal variable X that will be accessible from any DML block evaluated after thisvar i -
abl e statement is executed. The variable definition is available until the end of the validation phase.
Note that global variables are global with respect the the object being compiled. Each object has its
own variable table; thus global variables cannot be used to transmit information between objects. To
avoid naming conflicts between global and local variables, it is best practice to use all capital letters
for global variable names.

Automatic variables are provided by the compiler in certain contexts. The automatic variables are
SELF, OBJECT, FUNCTI ON, ARGC, and ARGV. The variable OBJECT is the easiest to explain; it
contains the name of the object currently being executed.

obj ect tenpl ate dummy. exanpl e. org;
"/ name' = OBJECT,

The path will contain the string "dummy.example.org" after execution. As the object templates are
usually named either directly or indirectly after the machines hostname, OBJECT is often used to
lookup host-specific information. The FUNCTI ON variable contains the name of the current function,
often used for debugging or error statements. The ARGC and ARGV variables are defined only within
a user-defined function and correspond to the number of arguments and a list of those arguments,
respectively.

In an assignment statement, SELF contains the value of the path before the DML block started exe-
cuting. Within a DML block, one cannot directly change the value of SELF but one can indirectly
change the value by assigning values to children of SELF. Thisisbest illustrated by an example;
object tenplate self-test;

"/result/a" = 'value a is set';

"Iresult' = {

15

Pan Tutorial

SELF['b'] = 'value b is set';
SELF;
b

$ panc --xnl-style=text self-test.tpl
$ cat self-test.txt
+-profile
+-result
$ a: (string) 'value a is set'
$b: (string) 'value b is set'

The compiler optimizes referencesto the SELF variable, so making incremental changesto aresource
like this is recommended. One common error when using SELF is not to remember to return SELF
asthe last expression in a block; this can lead to unexpected results or errors.

Any type can define a DML block to act as a validation function during the validation phase. The
DML block in this case must returnt r ue, if the validation was OK, or f al se, otherwise. In such a
validation block, the SELF variableis assigned the value of the element being validated. No changes
whatsoever can be made to the configuration tree or to the SELF variable during the validation phase.

8.3. Functions

There are alarge number of built-in functions available; see the pan language reference for the com-
plete list. The most commonly used functions are given in the following table.

nl i st (key, value, ...) create an nlist from the given parameters
[ist(value,...) create alist from the given parameters
cr eat e(name, key, value, ...) create an nlist from the named structure template
and provided key/value pairs
| engt h(resource), | engt h(string) returns the length of the given resource or string
mat ch(regexp, string) return boolean indicating if the given string
matches the given regular expression
mat ches(regexp, string) return alist of matched groups based on the given
regular expression and string
to_string(vaue),t o_| ong(value), type conversion functions
t o_bool ean(value), t o_doubl e(value)
i s_string(value),is_Ii st (vaue), type checking functionsreturn aboolean if the ar-
i s_nlist(vaue),.. gument is of the indicated type
debug(message), debugging functions;, debug and t r aceback
t r aceback(message), er r or (message) |will returnundef ; er r or will abort the process-
ing
value(path) return the value at the named path; the path may

be an absolute or external path

In addition to the built-in functions, users can also define functions. Thef unct i on statement alows
any DML block to be treated as a function. After the function is defined, it may be called within any
subsequent block just as a built-in function could. For example, the following will take the average
of a sequence of numbers.

obj ect tenplate function-test;

function average = {

Can't take an average w thout at |east one val ue.

16

Pan Tutorial

if (ARCC == 0) {
error('at | east one argument nust be given to average()');

}1
lterate over all of the values and keep running sum
sum = 0. 0;

foreach (key; value; ARGV) {

Ensure that the argunment is a nunber.
if (! is_nunber(value)) {

error (' non-nuneric value encountered: ' + to_string(value));
b
sum = sum + val ue;
b
Now gi ve back the average.
suni ARGC,
b
"/result' = average(l, 2.5, 3, 5);

$ panc --xnm -style=text function-test.tpl
$ cat function-test.txt
+-profile

$ result : (double) '2.875

Functions are commonly used to perform some common algorithm or to do some validation. If the
function is used for validation, then the function must return a boolean value. Note that all variables
within the scope of a function are local to the function and cannot influence (or be influenced by)
variables of the same name at other levels of the call stack.

8.4. Flow Control

In the DML, there are three expressions that can alter the normal sequential flow of execution: anii f
expression for branching, awhi | e expression for looping, and af or each expression for iteration.
All of these are expressions that return a value. The value of each expression is the value of the last
expression evaluated inthei f , whi | e, or f or each block. If the block is never executed, then the
expression returnsundef .

The syntax for thei f and whi | e expressions are the same as in most programming languages. The
syntax for the f or each expression requires an example:

obj ect tenplate foreach-test;

"Inlist-result' = {

result = ;
x =nlist('a", 1, 'b'", 2, 'c¢', 3);

foreach (key; value; x) {
result = result + key + " ->" + to_string(value) + " "

};

result;

b

"/list-result' = {

result = ;

17

Pan Tutorial

y = list('alpha', 'beta', 'ganm');

foreach (key; value; y) {
result = result + to_string(key) + " ->" + value + "

b

result;

b

$ panc --xnl -style=text foreach-test.tpl
$ cat foreach-test.txt

+-profile
$list-result : (string) 'O -> al pha 1 -> beta 2 -> gamm
$nlist-result : (string) 'a->1 b ->2 c ->3 '

Thef or each expression iterates over all of the children of the given resource, x and y in this ex-
ample. For each child, the iteration variables (key and val ue here) are assigned the key/index and
value of the child. Any valid names can be used for the iteration variables.

8.5. Exercises

1. Define afunction that pushes avalue on the end of alist. What happensif the list does not exist?

2. Define afunction that pushes a value on the end of SELF. What happensif the list does not exist?
If the function does not work in this case, can you create a version that does?

9. Software Configuration

On amachine managed by quattor, a daemon accepts notifications of configuration changes and then
runs a set of "components' to affect those changes on the client. A component is simply a script that
reads configuration information from the machine profile and then makes appropriate changes to the
services running on the client. This includes starting, stopping, or restarting services as appropriate.
Although it would be possible to create a single component that handles all of the machine configura-
tion, thisis neither scalable nor maintainable. Usually, a single component is responsible for asingle,
low-level service.

In our scenario, there will be four components to configure: NFS, Torque, users, and firewall. The
author of a component defines an appropriate configuration schema for the service and provides that
schemaviaapan language template. System administrators can then use that schemato set the service
parameters via the pan language.

9.1. Components

Components are built on acommon skeleton and share some common parameters. Our reduced exam-
plewill have an flag toindicateif acomponent isactive and lists of dependencies. An overly simplistic
schema might be the following:

type component = extensible {
active : boolean = true
pre ? string[]

post ? string[]

b

A series of components could be bound to a particular part of the configuration tree. The usual schema
used with quattor putsthe componentsat/ sof t war e/ conponent s/ asannlist; thebind statement
to accomplish thisis:

18

Pan Tutorial

bi nd '/ software/conponents' = conponent{};
Each component isidentified by aunique key in thisnlist.

Theext ensi bl e keyword on the record definition is extremely important. We expect each compo-
nent to define additional parameters specific to the service it treats. Without the ext ensi bl e key-
word, the pan compiler would only allow the three children that are explicitly defined in the compo-
nent type definition; the ext ensi bl e keyword alows other children to exist.

The above definition is overly simplistic because it does not validate the component's values very
well. The activeflag isfine; however, the pre- and post-dependencies should be limited to other active
components specified in the configuration. Similarly, any additional parameters should be validated
as much as possible to avoid having invalid parameters used to configure services. The next chapter
will concentrate on the more advanced validation features available in the pan language.

9.2. NFS Component Schema

The Network File System (NFS) is a service that allows a machine to export certain paths that can
then be mounted by other machines within their file systems. Correspondingly, there are two parts of
the NFS configuration: one part for a server that exports paths and one part for the client that mounts
those remote file systems. Note that any given machine can be aclient, server, or both. The following
schema captures the parameters needed for NFS configuration:

Type that defines path and authorized host for NFS server export.
type nfs_exports = {

"path' : string

"aut horized _host' : string

}s

Type contai ning parameters to nount renote NFS vol une.
type nfs_nounts = {

"host' : string
"path' : string
"mountpoint' : string

}s

Allows |ists of NFS exports and NFS nounts (both optional).
type config nfs = {

i ncl ude conponent

"exports' ? nfs_exports|[]

"mounts' ? nfs_nmounts|]

}s

Assuming the component type has been defined and boundto/ sof t war e/ component s asannlist
and the config_nfs type has been defined, the following will ensure that the / sof t war e/ conpo-
nent s/ nf s path meets both the component and config_nfs types:

bi nd ' /software/ conponents/nfs' = config_nfs;

Note that with the above bind, this implies that this path has two type definitions associated with
it: component and config_nfs. The pan language allows multiple types to be defined to a path and
enforces all of them. That is, al of the types bound to a path must be valid for the configuration as a
wholeto be valid. Be careful not to assign multiple incompatibl e types to the same path. For example,
the following will never lead to a validated configuration:

obj ect tenplate never-valid;

bind '/result'
bind '/result'

string;
bool ean;

19

Pan Tutorial

"/result' ="K ;

because either one or the other of the bound typeswill fail. Real-world conflicts of thistypeare usually
more complicated but, at the most basic level, arise because of incompatible primitive types being
assigned to the same path.

As can be seen above, allowing multiple types to be bound to the same path permits pan to have
functionality similar to object inheritance. In reality, thisisa"duck" typing system that simply checks
that all of the bound types are simultaneously satisfied.

9.3. Torque Component Schema

Torque is a commonly-used batch system. Like the NFS configuration, there are client and server
aspects to running Torque. One difference, however, is that a client can be associated with only one
server. The server configuration consists of a set of queues and list of client nodes associated with
the server. The client configuration simply indicates if the client's state and the name of the server.
The schemais:

Torque server information.

type torque_server = {
'queues' : string[1l..]
"workers' ? string[]

}s

Torque client information.
type torque client = {
"server' : string
"state' : string with match(SELF, 'open|closed|drain');

}s

Overall configuration

type config torque = {
i ncl ude conponent
'server_parans' ? torque_server
"client _parans' ? torque_client

}s

This can be bound to part of the configuration schema like was done for NFS. In our example, will
will usethe path/ syst eml conponent s/t or que.

9.4. Schemas for Users and a Firewall

In a complete system there are alarge number of services that need to be configured. Many of these
services share common needs for low-level configuration of things like the users and open ports on
thefirewall. These areincluded just to show some of the best practices when organizing configuration
templates. The simplified schemas are:

Sinpl e user configuration conmponent.
type config_users = {

i ncl ude conponent

"uid : long(0..){}

1

Sinmple firewall configuration conponent.
type config_firewall = {

i ncl ude conponent

"open' : long(0..)[]

20

Pan Tutorial

b

This allows usernames to be associated to a given UID and to specify open portsin the firewall.

9.5. Component Configuration Organization

Pan puts very few constraints on the organization of the configuration information for components.
Nonetheless, some best practices have arisen with use of the system and now almost every compo-
nent exposes two pan templates: schena. t pl and confi g. t pl . The schema template contains
a component's schema definition and any associated validation functions. The other file contains the
default configuration for the component, such as standard dependencies, global variables, etc. The
schema file for Torque might look like the following:

decl aration tenpl ate conponent/torque/ schemg;
i nclude { 'quattor/structure_conponent' };

Torque server information.

type torque_server = {
'queues' @ string[l..]
"workers' ? string[]

}s

Torque client information.
type torque_client = {
"server' @ string
"state' : string with match(SELF, 'open|closed|drain');

}s

Overal |l configuration.

type config_torque = {
i ncl ude conponent
"torque_user' ? string
'server_parans' ? torque_server
"client_parans' ? torque_client

b
and the associate default configuration file:

uni que tenpl ate conponent/torque/ config;

Define the schema for the Torque configuration.
i nclude { 'conponent/torque/schema' };

Define sone default port nunbers.
vari abl e TORQUE CLI ENT_PORT ?= 9999;
vari abl e TORQUE SERVER port ?= 9998;

Bind the schema to a particular place in the configuration tree.
bi nd '/ software/ conponents/torque' = config torque;

Set the conponent to be active by default.
'/ sof twar e/ conponent s/ torque/ active' ?= true;

To ensure that the necessary schema is defined and to ensure that all of the default actions have been
taken, it iswise to alwaysincludethe confi g. t pl file before each block of Torque configuration
statements. Notice that these templates are defined asadecl ar at i on and uni que templates, re-
spectively, to avoid any performance penalty for including these files repestedly. Usually a system
administrator would only includetheconfi g. t pl filedirectly.

21

Pan Tutorial

Distributions of templates usually go one step further and define templates for common service con-
figurations. For example, one could create a Torque server that does the default configuration for a
machine running a Torque server. Take the following example:

uni que tenpl ate service/torquel/server;
i nclude { 'component/torque/config };

Change the default port, setup the queues, and identify the worker nodes.

vari abl e TORQUE_SERVER PORT = 1212;

'/ sof t war e/ component s/ t or que/ server _par anms/ queues' = list('short', 'medium, 'I
"/ sof t war e/ conponent s/ t or que/ server _parans/workers' = |ist('workerl. exanple.org

Open the correct port on the firewall.

i nclude { 'component/firewall/config" };

'/ sof twar e/ conponents/firewall/open = {
SELF[| engt h(SELF)] = TORQUE_SERVER_PORT;

i

Setup the user for torque.
i nclude { 'conponent/users/config };
'/ sof t war e/ component s/ users/ui d/torque_ngr' = 1000;

Thistemplate would do all that is necessary to configure a Torque server, including the configuration
of the low-level services. A system administrator wanting to use this, would then create an object
template like the following:

obj ect tenplate torque-server;
... sone nmachi ne hardware configuration ...

Run a Torque server on this nachine.
i nclude { 'service/torque/config };

... inclusion of other high-level service configurations ...

Using the conventions described above allows maximum reuse of the configuration information and
makes it easy to mix-and-match high-level servicesfor a particular object template.

10. General Validation

The greatest strength of the pan language is the ability to do detailed validation of configuration pa-
rameters, of correlated parameters within a machine profile, and of correlated parameters between
machine profiles. Although the validation can make it difficult to get a particular machine profile to
compile, the time spent getting a valid machine configuration before deployment more than makes up
for the time wasted debugging a bad configuration that has been deployed.

Simple validation through the validation of primitive propertiesand simple resources has already been
covered when discussing the pan type definition features. This chapter deals with more complicated
scenarios.

10.1. Advanced Parameter Validation

Often there are cases where the legal values of aparameter cannot be expressed asasimplerange. The
pan language allows you to attach arbitrary validation code to a type definition. The code is attached
to the type definition using thewi t h keyword. Consider the following examples:

type even_positive_long = long(l..) with (SELF %2 == 0);
type machine_state _enum = string with match(SELF, 'open|closed|drain');

22

Pan Tutorial

type ip = string with is_ipv4(SELF);

The validation code must return the boolean value t r ue, if the associated value is correct. Return-
ing any other value or raising an error with the er r or function will cause the build of the machine
configuration to abort.

Simple constraints are often written directly with the type statement; more complicated validation
usualy calls a separate function. The third line in the example above calls the functioni s_i pv4.
Thisis a user-defined function that could look like:

function is_ipvd = {
terms = split('\.", ARGV[O]);
foreach (index; term terms) {
i =to_long(term;
if (i <0 || i > 255) {
return(false);

i

A real version of thisfunction would probably do agreat deal more checking of the value and probably
raise errors with more intuitive error messages.

10.2. Validation of Correlated Configuration Parame-
ters

Often the correct configuration of a machine requires that configuration parameters in different parts
of the configuration are correlated. One example is the validation of the pre- and post-dependencies
of the component configuration. It makes no sense for one component to depend on another one that
is not defined in the configuration or is not active.

Thefollowing validation function accomplishes such acheck, assuming that the componentsare bound
to/ sof t war e/ conponent s:

function valid_conponent _list = {
ARGV[0] should be the list to check.

Check that each referenced conponent exists.
foreach (k; v; ARGV[O0]) {

Path to the root of the naned conponent.
path = '/software/ conponents/' + v;

if (lexists(path)) {
error(path + ' does not exist');
} else {

Path to the active flag for the naned conponent.
active_path = path + '/active';

if (!(is_defined(active_path) && value(active_path))) {
error('conponent ' + v + ' isn't active');

};

23

Pan Tutorial

b
b
type conponent list = string[] with valid_conmponent |ist(SELF);

type conmponent = extensible {
active : boolean = true
pre ? conponent |i st

post ? conponent |i st

};

It also defines a component_list type and uses this for a better definition of a the component type.
This will get run on anything that is bound to the component type, directly or indirectly. Note how
the function looks at other values in the configuration by creating the path and looking up the values
with theval ue function.

The above function works but has one disadvantage: it will only work for components defined below
/ sof t war e/ conponent s. If the list of components is defined elsewhere, then this schema defi-
nition will have to be modified. One can usualy avoid this by applying the validation to a common
parent. In this case, we can add the validation to the parent.

function valid_conponent_nlist = {

Loop over each conponent.
foreach (nane; conponent; SELF) {

if (exists(conponent['pre'])) {
foreach (index; dependency; conponent['pre']) {
if (!exists(SELF['dependency']['active'] ||
SELF[' dependency'][' active'])) {
error (' non-exi stant or inactive dependency:

i

+ dependency);

b
b

... sane for post
i
i

type component = extensible {
active : boolean = true;
pre ? string[]

post ? string[]

b
type component _nlist = conponent{} wi th valid_conponent_nlist(SELF);

This will accomplish the same validation, but will be independent of the location in the tree. It is,
however, significantly more complicated to write and to understand the validation function. In thereal
world, the added complexity must be weighed against the likelihood that the type will be re-located
within the configuration tree.

The situation often arises that you want to validate a parameter against other siblings in the machine
configuration tree. In this case, we wanted to ensure that other components were properly configured;
to know that we needed to search "up and over" in the machine configuration. The pan language does

24

Pan Tutorial

not allow use of relative paths for the val ue function, so the two options are those presented here.
Use an absolute path and reconstruct the paths or put the validation on a common parent.

10.3. Cross-Machine Validation

Another common situation is the need to validate machine configurations against each other. This
often arises in client/server situations. For NFS, for instance, one would probably like to verify that
a network share mounted on a client is actually exported by the server. The following example will
do this:

Deternmine that a given nounted network share is actually
exported by the server.
function valid_export = {

info = ARGV[O0];
nmyhost i nfo[' host'];
nmypat h info['path'];

exports_path = host + ':/software/ conponents/nfs/exports';

found = fal se;
if (path_exists(exports_path)) {

exports = val ue(exports_path);

foreach (index; einfo; exports) {
if (einfo['authorized host'] == myhost &&
einfo['path'] == nypath) {
found = true;

b
b

f ound;

};

Type that defines path and authorized host for NFS server export.
type nfs_exports = {

"path' : string

"aut horized_host' : string

b

Type contai ning paranmeters to nmount renote NFS vol une.
type nfs_nounts = {

"host' : string
"path' : string
"mount point' : string

} with valid_export (SELF);

Allows lists of NFS exports and NFS nounts (both optional).
type config nfs = {

i ncl ude conponent

"exports' ? nfs_exports|[]

"mounts' ? nfs_nmounts|]

b

To do thistype of validation, the full external path must be constructed for the val ue function. This
has the same disadvantage as above in that if the schemais changed the function definition needs to

25

Pan Tutorial

be altered accordingly. The above code also assumes that the machine profile names are equivalent
to the hostname. If another convention is being used, then the hostname will have to be converted to
the corresponding machine name.

It is worth noting that all of the validation is done after the machine configuration trees are built.
This allows circular validation dependencies to be supported. That is, clients can check that they are
properly included in the server configuration and the server can check that its clients are configured.
A batch system is atypical example where this circular cross-validation is useful.

10.4. Exercises

1. Deviseaschemafor aclient/server system that you are familiar with.
2. Add validation for all of the parameters.
3. Createtheconfi g. t pl andschema. t pl filesfor thissystem.

4. Create client and server files for this service. Incorporate them in object templates and ensure that
they behave as expected.

5. Add validation to verify the client and server machine configurations against each other.

6. Create the validation functions necessary to do the circular cross-validation described for the
Torque batch system.

11. Conclusions

Thistutorial covered the highlights of the pan language. After finishing thistutorial, you should be able
to create and maintain a site configuration written in the pan language. This tutorial, however, did not
cover any of the configuration conventions of a particular community. Ask others in the community
about common conventions (e.g. on the Quattor mailing list or the Quattor Working Group (QWG)
wiki); links to other sources of information can be found on the Quattor web site. Y ou can also find
more information about the pan language and the pan compiler in the other documents distributed
with the compiler.

26

