
1

Pan Tutorial
Charles Loomis

Abstract

This tutorial introduces the pan compiler and pan configuration language. Those following the
tutorial should understand the purpose of the pan compiler and how the pan configuration lan-
guage allows a system administrator to describe the configuration of a machine. This tutorial
highlights all of the major features of the pan language: simple declarative syntax, type check-
ing, and extensive schema validation.

Table of Contents
1. Purpose of the Pan Compiler ... 1
2. Invoking the Pan Compiler ... 2
3. Tutorial Scenario ... 4
4. Setting Configuration Values ... 4

4.1. Properties and Primitive Types .. 5
4.2. Resources .. 6
4.3. Exercises ... 6

5. Simple Type Checking ... 7
5.1. Binding Primitive Types to Paths ... 7
5.2. User-Defined Types .. 7
5.3. Schema Definition .. 8
5.4. Exercises ... 10

6. Modular Configuration ... 10
6.1. Include Statement .. 10
6.2. Structure Templates ... 12
6.3. Exercises ... 13

7. Default Values .. 13
7.1. Exercises ... 14

8. Data Manipulation Language ... 14
8.1. Operators ... 14
8.2. Variables ... 15
8.3. Functions ... 16
8.4. Flow Control .. 17
8.5. Exercises ... 18

9. Software Configuration ... 18
9.1. Components ... 18
9.2. NFS Component Schema .. 19
9.3. Torque Component Schema .. 20
9.4. Schemas for Users and a Firewall .. 20
9.5. Component Configuration Organization ... 21

10. General Validation ... 22
10.1. Advanced Parameter Validation ... 22
10.2. Validation of Correlated Configuration Parameters ... 23
10.3. Cross-Machine Validation ... 25
10.4. Exercises .. 26

11. Conclusions .. 26

1. Purpose of the Pan Compiler
The pan compiler is a critical component of the quattor fabric management toolkit that translates a
high-level site configuration written by a system administrator in the pan configuration language to

Pan Tutorial

2

a machine-readable representation. The pan configuration language allows a system administrator
to define simultaneously both a site configuration and a schema for validation. One advantage the
pan language has over, for example, XML and XMLSchema is that it is declarative language with
a simple, human-friendly syntax. In addition, the typing features of the pan language allow more
rigorous validation than XMLSchema.

The name "compiler" is actually a misnomer, as the pan compiler does much more than a simple
compilation. The processing progresses through five stages:

compilation Compile each individual template (file written in the pan configu-
ration language) into a binary format.

execution The statements in each object template are executed to generate a
partial tree of configuration information. The object template usu-
ally includes many other templates during the course of execution.
The generated tree contains all configuration information directly
specified by the system administrator.

insertion of defaults A pass is made through the tree of configuration information during
which default values (if specified) are inserted for missing elements.
The tree of configuration information is complete after this stage.

validation The configuration information is frozen and all of the user-speci-
fied validation is run. (This is actually implemented as two separate
validation passes to allow circular validation dependencies between
machines.) Any invalid values or conditions will cause the process-
ing to abort. If this stage finishes, then the configuration informa-
tion is complete and validated.

serialization Once the information is complete and valid, it is serialized to a file.
Usually, this file is in an XML format, but other representations are
available as well.

The pan compiler runs through these stages for each "object" template. An "object" template is a
special template that indicates a configuration tree that should be serialized; usually there is one object
template for each physical machine. (Although with the rise of virtualization, it may be one per logical
machine.)

2. Invoking the Pan Compiler
In order to experiment with the pan compiler, you must first install it; see the pan compiler manual
for instructions for downloading and installing an appropriate version. For this tutorial, the command
line interface is the most convenient method for invoking the compiler. However, there are other
mechanisms for invoking it directly from java or for integrating it with ant.

Once you have installed the compiler, make sure that it is correctly installed by using the commands:

$ panc --version
$ panc --help

The first command will return the version of the compiler; the second will give a complete list of all
of the available options.

Now create a file named hello.tpl that contains the following:

object template hello;
'/message' = 'hello';

Now compile this profile into the default XML representation and look at the output.

$ panc hello.tpl

Pan Tutorial

3

$ cat hello.xml
<?xml version="1.0" encoding="UTF-8"?>
<nlist format="pan" name="profile">
<string name="message">hello</string>
</nlist>

The output should look similar to what is shown above. As you can see the generated information has
a simple structure: a top-level element of type nlist, named "profile" with a single string child, named
"message". The value of the "message" is "hello". If the output format is not specified, the default is
the "pan" XML style shown above, in which the element names are the pan primitive types and the
name attribute gives the associated name of the element in the pan template.

The pan compiler can generate output in three additional formats: xmldb, text, and dot. The xmldb
format is a format in which the pan names are used for XML elements and the type attribute gives
the element type. (If not specified, the default type is string.) The following shows the output for the
xmldb format.

$ panc --xml-style=xmldb hello.tpl
$ cat hello.xml
<?xml version="1.0" encoding="UTF-8"?>
<profile format="xmldb">
<message type="string">hello</message>
</profile>

This format is convenient if the resulting output will be processed with tools like XSLT or XQuery
because the XPath expression to use for a particular element is very close (but not identical) to the
pan language path.

For this tutorial, the most convenient representation will the the text format. This provides a clean
representation of the configuration tree on a terminal.

$ panc --xml-style=text hello.tpl
$ cat hello.txt
+-profile
 $ message : (string) 'hello'

Note that the output file is named hello.txt and no longer hello.xml. It provides the same
information as the XML formats, but is easier to understand visually.

The last style is the "dot" format. This format produces an output file that Graphviz [http://
www.graphviz.org/] can use to generate a graph of the configuration information.

$ panc --xml-style=dot hello.tpl
$ cat hello.dot
digraph "profile" {
bgcolor = beige
node [color = black, shape = box, fontname=Helvetica]
edge [color = black]
"/profile" [label = "profile"]
"/profile/message" [label = "message\n'hello'"]
"/profile" -> "/profile/message"
}

Although the text is not very enlightening by itself, it can be used by Graphviz to generate a graph
of the configuration. Processing the above file with Graphviz produces the image shown in Figure 1,
“Graph of configuration produced by hello.tpl.”. The images in the tutorial have been produced with
the dot output of the compiler.

Figure 1. Graph of configuration produced by hello.tpl.

http://www.graphviz.org/
http://www.graphviz.org/
http://www.graphviz.org/

Pan Tutorial

4

3. Tutorial Scenario
This tutorial will demonstrate how to define a configuration schema and populate it with values using
the pan configuration language. To keep this tutorial from becoming a dry exercise of pan functionality,
a simplified but typical configuration scenario will be used. A system administrator has four machines
that need to be installed. One of the machines will be an NFS server to provide a shared file system to
the other three machines. One of the machines will be the head node of a batch system and the other
two will be the batch system clients, or worker nodes.

The corresponding configuration schema will consist of both hardware and software aspects of the
configuration. For the hardware aspects, the schema will include information about the location of
the machine, RAM, CPUs, disks, and network interface cards (NICs). The software configuration will
include parameters for configuring an NFS server, NFS client, batch system head node, and batch
system client. The software configuration will also contain information about some related low-level
services such as a firewall.

The schema developed in this tutorial borrows ideas from the standard Quattor schema. However for
pedagogical reasons, the schema here is simplified to demonstrate the essential pan language features.
At the end of the tutorial, readers should understand the core features of the pan configuration language
and be able to understand the standard Quattor schema. Additional work with other components of the
Quattor system will be necessary to use Quattor to configure a real set of machines.

4. Setting Configuration Values
The pan configuration language is a declarative language that allows configuration parameters ar-
ranged in a hierarchical tree to be given values. At its simplest level, pan simply sets key/value pairs
where the keys can be arranged hierarchically. Consider initially the hardware information for the ma-
chines: location of the machine, RAM, CPUs, disks, and network interface cards (NICs). One possible
way of specifying this information in pan is the following:

object template nfsserver.example.org;

'/hardware/location/rack' = 'IBM04';
'/hardware/location/slot' = 25;

'/hardware/ram' = 2048;

'/hardware/cpu/model' = 'Intel Xeon';
'/hardware/cpu/speed' = 2.5;
'/hardware/cpu/arch' = 'x86_64';
'/hardware/cpu/cores' = 4;
'/hardware/cpu/number' = 2;

'/hardware/disks/ide/0/capacity' = 64;
'/hardware/disks/ide/0/boot' = true;
'/hardware/disks/ide/0/label' = 'system';
'/hardware/disks/ide/1/capacity' = 1024;
'/hardware/disks/ide/1/boot' = false;

'/hardware/nic/0/mac' = '01:23:45:ab:cd:99';
'/hardware/nic/0/pxeboot' = false;
'/hardware/nic/1/mac' = '01:23:45:ab:cd:00';
'/hardware/nic/1/pxeboot' = true;

In this example, each assignment statement sets one value. On the left-hand side is the absolute path,
which must be a single- or double-quoted string; the right-hand side is the value to assign to that path.
All absolute paths must begin with a slash. Save this to the file nfsserver.example.org.tpl.

Pan Tutorial

5

Invoking the pan compiler on this will cause a configuration tree to be built by executing the assign-
ment statements in order from the beginning to the end. The text representation of the compiler output
looks like:

$ panc --xml-style=text nfsserver.example.org
$ cat nfsserver.example.org.txt
+-profile
 +-hardware
 +-cpu
 $ arch : (string) 'x86_64'
 $ cores : (long) '4'
 $ model : (string) 'Intel Xeon'
 $ number : (long) '2'
 $ speed : (double) '2.5'
 +-disks
 +-ide
 +-0
 $ boot : (boolean) 'true'
 $ capacity : (long) '64'
 $ label : (string) 'system'
 +-1
 $ boot : (boolean) 'false'
 $ capacity : (long) '1024'
 +-location
 $ rack : (string) 'IBM04'
 $ slot : (long) '25'
 +-nic
 +-0
 $ mac : (string) '01:23:45:ab:cd:99'
 $ pxeboot : (boolean) 'false'
 +-1
 $ mac : (string) '01:23:45:ab:cd:00'
 $ pxeboot : (boolean) 'true'
 $ ram : (long) '2048'

showing how a machine with an dual-CPU machine with Intel Xeon chips running at 2.5 GHz, 2 GB
of RAM, two IDE disks, two NICs, and located in rack IBM04 in slot 25 could be represented. This
information could then be used by other parts of the Quattor toolkit (or any other tool for that matter) to
do some work based on this information, although the XML format is usually used when transmitting
the information to other tools.

Although this example should be fairly intuitive for most readers, there are a few subtleties to point
out. The first line of the example indicates that this file represents a "managed object" and should
produce an output file. If the object modifier is left out, then the file will compile but no output file
will be produced. The tutorial will explain the different types of templates later.

Notice that it was not necessary to specify all of the parents of a particular path. For example, there was
no assignment statement with the path /hardware. When assigning a value to a particular path, pan
will automatically create the parents as necessary. In the pan language, the leaves of the tree (terminal
values) are called properties. All of the assignment statements in this example set properties. The
branches of the tree (collections) are generically called resources. The term element encompasses both
pan properties and resources.

4.1. Properties and Primitive Types
The properties can have any of the primitive types that pan supports: long, double, boolean, and string.
The syntax for writing literal values is the same as most modern programming languages. In addition
to the usual base-10 format for long literals, octal and hexadecimal literals can also be specified by
using a leading '0' or '0x' respectively. For example, fifteen can be written as 15, 017, or 0xf. Double

Pan Tutorial

6

literals can be specified with or without an exponent. One particularity of pan is that all double literals
must start with a digit. That is, .2 is not a valid double literal and must instead be written as 0.2.

String values may be specified with a single-quoted, double-quoted, or a heredoc syntax. All characters
within a single-quoted string are taken literally. For example, the string 'no new line\n' will
contain a backslash and character n at the end of the string. The only exception is that a doubled
single quote represents a single literal quote within a single-quoted value. It is best practice to use
single-quoted strings to specify path values. In contrast, the double-quoted string "with a new
line\n" will contain a new line character at the end. All of the usual c-style escape sequences are
supported. For long multi-line strings, the heredoc syntax may be used:

object template heredoc;

'/longstring' = <<EOF;
This is a
long multiline
string.
EOF

The token after the << operator will mark the end of the multi-line string and can be chosen by the user.
The string will begin after the next new line in the source template and end before the line containing
the end token. The ending token must appear on a separate line by itself; no other characters (including
whitespace) may appear on the line with the ending token.

4.2. Resources
There are two types of resources supported by pan: list and nlist. A list is an ordered list of elements
with the indexing starting at zero. In the above example, there are two lists /hardware/disks/
ide and /hardware/nic. The order of a list is significant and maintained in the serialized repre-
sentation of the configuration. An nlist (named list) associates a name with an element; these are also
known as hashes or associative arrays. One nlist in the above example is /hardware/cpu, which
has arch, cores, model, number, and speed as children. Note that the order of an nlist is not
significant and that the order specified in the template file is not preserved in the serialized version of
the configuration. Although the algorithm for ordering the children of an nlist in the serialized file is
not specified, the pan compiler guarantees a consistent ordering of the same children from one com-
pilation to the next.

Within a given path, lists and nlists can be distinguished by the names of their children. Lists always
have children whose names are valid long literals. In the following example, /mylist is a list with three
children:

object template mylist;

'/mylist/0' = 'decimal index';
'/mylist/01' = 'octal index';
'/mylist/0x3' = 'hexadecimal index';

The indices can be specified in decimal, octal, or hexadecimal. The names of children in an nlist must
begin with a letter or underscore.

4.3. Exercises
1. Pan creates parent resources automatically inferring the type of resource (list or nlist) from the path

itself. What happens if two assignment statements implicitly define different types for a resource?

2. What happens if a list is defined with a "hole" in it? Try defining and compiling a template in which
a list only has the third element (index = 2) defined.

3. What happens if you redefine the same path later in the same template? Which value appears in
the serialized file?

Pan Tutorial

7

4. What happens if you redefine the same path later in the same template but assign a value with a
different primitive type? What happens if you define the path to the special literal undef between
those two assignments?

5. What happens if you define the /hardware/cpu/number to be a boolean or string value?

6. Can you delete a property or resource that was previously defined in the template? Hint: try using
the special literal null.

7. What happens if you try to set a path that does not begin with a slash?

5. Simple Type Checking
If you worked through the exercises of the previous section, you will have discovered that although you
have an intuitive idea of what type a particular path should contain (e.g. /hardware/cpu/number
should be positive long), the pan compiler does not. Downstream tools to configure a machine will
likely expect certain values to have certain types and will produce errors or erroneous configurations
if the correct type is not used. One of the strengths of the pan language is to specify constraints on the
values to detect problems before configurations are deployed to machines.

5.1. Binding Primitive Types to Paths
At the most basic level, a system administrator can tell the pan compiler that a particular ele-
ment must be a particular type. This is done with the bind statement. To tell the compiler that
the path /hardware/cpu/number must be a long value, add the following statement to the
nfsserver.example.org example.

bind '/hardware/cpu/number' = long;

This statement can appear anywhere in the file; all of the specified constraints will be verified after the
complete configuration is built. Setting this path to a value that is not a long or not setting the value
at all will cause the compilation to fail.

The above constraint only does part of the work though; the value could still be set to zero or a negative
value without having the compiler complain. Pan also allows a range to be specified for primitive
values. Changing the statement to the following:

bind '/hardware/cpu/number' = long(1..);

will require that the value be a positive long value. A valid range can have the minimum value, maxi-
mum value, or both specified. A range is always inclusive of the endpoint values. The endpoint values
must be long literal values. A range specified as a single value indicates an exact match (e.g. 3 is short-
hand for 3..3). A range can be applied to a long, double, or string value. For strings, the range is
applied to the length of the string. A range cannot be applied to boolean values.

5.2. User-Defined Types
While one could imagine adding bind statements for every named element within a configuration tree,
this would quickly become tedious. To avoid unnecessary duplication, pan allows user-defined types
both for properties and resources. One could define, for example, a type for a port number and then
privileged and unprivileged ports:

type port = long(0..65535);
type priv_port = port(..1024);
type unpriv_port = port(1025..);

The above statements would define three new types: port, priv_port, and unpriv_port. Note that once a
type has been defined, it may be used anywhere in the pan language that native types are allowed. Here
the privileged and unprivileged port types are defined in term of port. The order is significant here;
a valid type definition can only reference types that have been previously defined. Defining "alias"

Pan Tutorial

8

types like this can reduce errors by enforcing consistent constraints and improve the readability of the
code if appropriate names are chosen.

User-defined types can be bound to a path using exactly the same syntax as for binding with primitive
types. Once again order is significant; referenced types must be defined before a bind statement is
executed.

Homogeneous resources can be easily defined by adding brackets or braces to a type definition:

type port_list = port[];
type port_nlist = port{};

where these define a list or nlist, respectively. Empty brackets or braces means that there are no re-
strictions on the size of the resource; the resources may also be empty. If the brackets or braces contain
a range, the constraint is applied to the size of the resource. For example, long[3] would be a long
list with exactly three children and long[1..] would be a long list with one or more children.

One of the most common user-defined types is that of a record. A record is an nlist with specific,
named children defined. For example, one can specify a disk_info type to define the disk information
in the nfsserver.example.org example:

type disk = {
 'label' ? string
 'capacity' : long(1..)
 'boot' : boolean
};

This type definition would be an nlist with three children named label, capacity, and boot. The
label is an optional child (indicated by the question mark) and may or may not exist. However, if
it does exist then the given type constraint must be met. The other two are required children and they
must exist for the type definition to validate correctly. Children with other names are not permitted
by this type definition.

Occasionally it is useful to define an open or extensible record that allows children not specified in the
type definition to exist. Imagine that for the machine location that the rack and slot information is
required, but other information could be added as well. The following record definition:

type location = extensible {
 'rack' : string
 'slot' : long(0..50)
};

would allow someone to add information like the building number without violating this type's con-
straints.

5.3. Schema Definition
Using type definitions for properties and resources, one can build a global schema for a con-
figuration. Using a global schema is extremely important when using pan to define configura-
tions because it allows extensive compile-time checking of the configuration, avoiding having to
cleanup the mess that can result from deploying a bad configuration. The following revisits the
nfsserver.example.org configuration by adding a full schema:

object template nfsserver.example.org;

type location = extensible {
 'rack' : string
 'slot' : long(0..50)
};

type cpu = {

Pan Tutorial

9

 'model' : string
 'speed' : double(0..)
 'arch' : string
 'cores' : long(1..)
 'number' : long(1..)
};

type disk = {
 'label' ? string
 'capacity' : long(1..)
 'boot' : boolean
};

type disks = {
 'ide' ? disk[]
 'scsi' ? disk{}
};

type nic = {
 'mac' : string
 'pxeboot' : boolean
};

type hardware = {
 'location' : location
 'ram' : long(0..)
 'cpu' : cpu
 'disks' : disks
 'nic' : nic[]
};

type root = {
 'hardware' : hardware
};

bind '/' = root;

'/hardware/location/rack' = 'IBM04';
'/hardware/location/slot' = 25;

'/hardware/ram' = 2048;

'/hardware/cpu/model' = 'Intel Xeon';
'/hardware/cpu/speed' = 2.5;
'/hardware/cpu/arch' = 'x86_64';
'/hardware/cpu/cores' = 4;
'/hardware/cpu/number' = 2;

'/hardware/disk/ide/0/capacity' = 64;
'/hardware/disk/ide/0/boot' = true;
'/hardware/disk/ide/0/label' = 'system';
'/hardware/disk/ide/1/capacity' = 1024;
'/hardware/disk/ide/1/boot' = false;

'/hardware/nic/0/mac' = '01:23:45:ab:cd:99';
'/hardware/nic/0/pxeboot' = false;
'/hardware/nic/1/mac' = '01:23:45:ab:cd:00';
'/hardware/nic/1/pxeboot' = true;

Pan Tutorial

10

The series of type definitions progressively define the full schema from the lowest to highest levels.
Note that there is only one bind statement in this configuration. This bind statement binds the root
resource, specified by the path '/', to the root of the schema. All of the other definitions are bound
implicitly through this one statement.

5.4. Exercises

1. Determine what happens if the type definitions are specified in the wrong order.

2. Verify that the type definitions are fully applied to the nfsserver.example.org example by
specifying some invalid values.

3. Also verify that adding paths outside of the schema is caught by the validation.

4. Although the schema in the last nfsserver.example.org template is much more restrictive,
there are still several places where simple typos or inconsistent values could produce an invalid
configuration. Where are they? What would you want to do to fix them?

5. What happens if you bind several different types to the same path?

6. Modular Configuration

6.1. Include Statement

So far only the hardware configuration and schema for one machine has been defined with the
nfsserver.example.org configuration. One could imagine just doing a cut and paste to cre-
ate the other three machines in our scenario. While this will work, the global site configuration will
quickly become unwieldy and error-prone. In particular the schema is something that should be shared
between all or many machines on a site. Multiple copies means multiple copies to keep up-to-date and
multiple chances to introduce errors.

To encourage reuse of the configuration and to reduce maintenance effort, pan allows one template
to include another (with some limitations). For example, the above schema can be pulled into another
template (named common/schema.tpl) and included in the main object template.

declaration template common/schema;

type location = extensible {
 'rack' : string
 'slot' : long(0..50)
};

type cpu = {
 'model' : string
 'speed' : double(0..)
 'arch' : string
 'cores' : long(1..)
 'number' : long(1..)
};

type disk = {
 'label' ? string
 'capacity' : long(1..)
 'boot' : boolean
};

Pan Tutorial

11

type disks = {
 'ide' ? disk[]
 'scsi' ? disk{}
};

type nic = {
 'mac' : string
 'pxeboot' : boolean
};

type hardware = {
 'location' : location
 'ram' : long(0..)
 'cpu' : cpu
 'disks' : disks
 'nic' : nic[]
};

type root = {
 'hardware' : hardware
};

The main object template then becomes:

object template nfsserver.example.org;

include { 'common/schema' };

bind '/' = root;

'/hardware/location/rack' = 'IBM04';
'/hardware/location/slot' = 25;

'/hardware/ram' = 2048;

'/hardware/cpu/model' = 'Intel Xeon';
'/hardware/cpu/speed' = 2.5;
'/hardware/cpu/arch' = 'x86_64';
'/hardware/cpu/cores' = 4;
'/hardware/cpu/number' = 2;

'/hardware/disk/ide/0/capacity' = 64;
'/hardware/disk/ide/0/boot' = true;
'/hardware/disk/ide/0/label' = 'system';
'/hardware/disk/ide/1/capacity' = 1024;
'/hardware/disk/ide/1/boot' = false;

'/hardware/nic/0/mac' = '01:23:45:ab:cd:99';
'/hardware/nic/0/pxeboot' = false;
'/hardware/nic/1/mac' = '01:23:45:ab:cd:00';
'/hardware/nic/1/pxeboot' = true;

There are three important changes to point out.

First, there is a new pan statement in the nfsserver.example.org template to include the
schema. The include statement takes the name of the template to include as a string; the braces
are mandatory. If the template is not included directly on the command line, then the compiler will
search the loadpath for the template. If the loadpath is not specified, then it defaults to the current
working directory.

Pan Tutorial

12

Second, the schema has been pulled out into a separate file. The first line of that schema template
is now marked as a declaration template. Such a template can only include type declarations.
(Also variable and function declarations as we will see later.) Such a template will be included at most
once when building an object; all inclusions after the first will be ignored. This allows many different
template to reference type (and function) declarations that they use without having to worry about
accidentally redefining them.

Third, the schema template name is common/schema and must be located in a file called com-
mon/schema.tpl; that is, it must be in a subdirectory of the current directory called common.
This is called namespacing and allows the templates that make up a configuration to be organized into
subdirectories. For the few templates that are used in this tutorial, namespacing is not critical. It is,
however, critical for real sites that are likely to have hundreds or thousands of templates. Note that the
hierarchy for namespaces is completely independent of the hierarchy used in the configuration schema.

Pulling out common declarations and help maintain coherence between different managed machines
and reduce the overall size of the configuration. There are however, more mechanisms to reduce du-
plication.

6.2. Structure Templates
Sites usually buy many identical machines in a single purchase, so much of the hardware configura-
tion for those machines is the same. Another mechanism that can be exploited to reuse configuration
parameters is a structure template. Such a template defines an nlist that is initially independent
of the configuration tree itself. For our scenario, let us assume that the four machines have identical
RAM, CPU, and disk configurations; the NIC and location information is different for each machine.
The following template pulls out the common information into a structure template:

structure template common/machine/ibm-server-model-123;

'ram' = 2048;

'cpu/model' = 'Intel Xeon';
'cpu/speed' = 2.5;
'cpu/arch' = 'x86_64';
'cpu/cores' = 4;
'cpu/number' = 2;

'disk/ide/0/capacity' = 64;
'disk/ide/0/boot' = true;
'disk/ide/0/label' = 'system';
'disk/ide/1/capacity' = 1024;
'disk/ide/1/boot' = false;

'location' = undef;
'nic' = undef;

The structure template is not rooted into the configuration (yet) and hence all of the paths in the
assignment statements must be relative; that is, they do not begin with a slash. Also, the location
and nic children were set to undef. These are the values that will vary from machine to machine,
but we want to ensure that anyone using this template sets those values. If someone uses this template,
but forgets to set those values, the compiler will abort the compilation with an error. The undef value
may not appear in a final configuration.

How is this used in the machine configuration? The include statement will not work because we
must indicate where the configuration should be rooted. The answer is to use an assignment statement
along with the create function.

object template nfsserver.example.org;

Pan Tutorial

13

include { 'common/schema' };

bind '/' = root;

'/hardware' = create('common/machine/ibm-server-model-123');

'/hardware/location/rack' = 'IBM04';
'/hardware/location/slot' = 25;

'/hardware/nic/0/mac' = '01:23:45:ab:cd:99';
'/hardware/nic/0/pxeboot' = false;
'/hardware/nic/1/mac' = '01:23:45:ab:cd:00';
'/hardware/nic/1/pxeboot' = true;

Finally, the machine configuration contains only values that depend on the machine itself with com-
mon values pulled in from shared templates.

Although the example here uses the hardware configuration, in reality it can be used for any subtree
that is invariant or nearly-invariant. One can even reuse the same structure template many times in the
same object just be creating a new instance and assigning it to a particular part of the tree.

6.3. Exercises
1. What happens if you put an absolute assignment statement in a structure template?

2. What happens if you put a relative assignment statement in an object template?

3. Come up with an example where you might want to reuse the same structure template several times
in the same object.

4. What happens if you try to include an object template from another object, declaration, or structure
template?

5. What happens if you try to include a structure template with an include statement?

7. Default Values
Looking again at the nfsserver.example.org configuration, there are a couple of places where we could
hope to use default values. The pxeboot and boot flags in the nic and disk type definitions could
use default values. In both cases, at most one value will be set to true; all other values will be set to
false. Another place one might want to use default values is in the cpu type; perhaps we would like
to have number and cores both default to 1 if not specified.

Pan allows type definitions to contain default values. For example, to change the three type definitions
mentioned above:

type cpu = {
 'model' : string
 'speed' : double(0..)
 'arch' : string
 'cores' : long(1..) = 1
 'number' : long(1..) = 1
};

type nic = {
 'mac' : string

Pan Tutorial

14

 'pxeboot' : boolean = false
};

type disk = {
 'label' ? string
 'capacity' : long(1..)
 'boot' : boolean = false
};

With these definitions, the lines which set the pxeboot and boot flags to false can be removed from
the configuration and the compiler will still produce the same result. The default value will only be
used if the corresponding element does not exist or has the undef value after all of the statements for
an object have been executed. Consequently, a value that has been explicitly defined will always be
used in preference to the default. Although one can set a default value for an optional field in a record,
it will have an effect only if the value was explicitly set to undef.

The default values must be a compile time constants.

7.1. Exercises

1. Update the schema template using the type definitions with defaults. Remove the unnecessary lines
in the nfsserver.example.org template and ensure that the defaults are correctly used.

2. Can you set a default value to an illegal value? When is the illegal value detected?

3. Can you set a default value to undef?

4. Set a default value for an optional field and see if/when this is used?

8. Data Manipulation Language
Although a declarative language has many benefits, there are times when values need to be calculated
or verified based on some algorithm. To allow this in the pan language without giving up the funda-
mental declarative nature of the language, pan allows a Data Manipulation Language (DML) block to
appear in most places where a literal value can appear. The DML block can use information contained
in global variables, in the current object, or in other objects to calculate a value. This makes the lan-
guage much more flexible without giving up the simplicity of the overall pan syntax.

A DML block is a sequence of one or more expressions, where every expression returns a value. The
value for an entire DML block is the value of the last executed statement. The DML syntax looks like a
simplified version of c. The DML block can only return a value and cannot directly or indirectly change
the configuration tree nor the global state except by assigning the return value to a path or variable.

8.1. Operators

DML has a complete set of operators for arithmetic, bit operations, and comparison operators. These
are identical to those available in Java, including that the plus operator (+) works also to concatenate
strings. See the pan language reference for a complete list of all of the operators. Where necessary in a
calculation, DML will promote long values to doubles; no other automatic conversions are performed.

'/result1' = 147 + 10; # will be 157
'/result2' = 153 == (150 + 3); # will be true
'/result3' = {
 5 + 5;
 20 % 5;
 6 * 5.0;

Pan Tutorial

15

}; # will be 30.0

In assignment statements, single expressions can be used after the equal sign without brackets. DML
blocks with multiple statements must be surrounded by braces. DML blocks may appear as default
values in type definitions if the block evaluates to a constant, compile-time value.

8.2. Variables
There are three types of variables in the pan language. Local variables defined and used within a DML
block, global variables defined by the variable statement and automatic variables provided by the
compiler.

Local variables can be defined within a DML block simply by assigning a value to them. There is
no need to declare the variable before assigning a value; the variable must have been defined before
using it on the right-side of an expression.

'/result' = {
 x = 10;
 y = 20;
 z = 30;
 x + y - z;
}; # will be zero

Once the DML block has finished, all of the local variables are destroyed and are no longer accessible.

Global variables can be defined by using the pan variable statement. For example,

variable X = 'hello world!';

will define a global variable X that will be accessible from any DML block evaluated after this vari-
able statement is executed. The variable definition is available until the end of the validation phase.
Note that global variables are global with respect the the object being compiled. Each object has its
own variable table; thus global variables cannot be used to transmit information between objects. To
avoid naming conflicts between global and local variables, it is best practice to use all capital letters
for global variable names.

Automatic variables are provided by the compiler in certain contexts. The automatic variables are
SELF, OBJECT, FUNCTION, ARGC, and ARGV. The variable OBJECT is the easiest to explain; it
contains the name of the object currently being executed.

object template dummy.example.org;
'/name' = OBJECT;

The path will contain the string "dummy.example.org" after execution. As the object templates are
usually named either directly or indirectly after the machines hostname, OBJECT is often used to
lookup host-specific information. The FUNCTION variable contains the name of the current function,
often used for debugging or error statements. The ARGC and ARGV variables are defined only within
a user-defined function and correspond to the number of arguments and a list of those arguments,
respectively.

In an assignment statement, SELF contains the value of the path before the DML block started exe-
cuting. Within a DML block, one cannot directly change the value of SELF but one can indirectly
change the value by assigning values to children of SELF. This is best illustrated by an example:

object template self-test;

'/result/a' = 'value a is set';

'/result' = {

Pan Tutorial

16

 SELF['b'] = 'value b is set';
 SELF;
};

$ panc --xml-style=text self-test.tpl
$ cat self-test.txt
+-profile
 +-result
 $ a : (string) 'value a is set'
 $ b : (string) 'value b is set'

The compiler optimizes references to the SELF variable, so making incremental changes to a resource
like this is recommended. One common error when using SELF is not to remember to return SELF
as the last expression in a block; this can lead to unexpected results or errors.

Any type can define a DML block to act as a validation function during the validation phase. The
DML block in this case must return true, if the validation was OK, or false, otherwise. In such a
validation block, the SELF variable is assigned the value of the element being validated. No changes
whatsoever can be made to the configuration tree or to the SELF variable during the validation phase.

8.3. Functions
There are a large number of built-in functions available; see the pan language reference for the com-
plete list. The most commonly used functions are given in the following table.

nlist(key, value, ...) create an nlist from the given parameters

list(value, ...) create a list from the given parameters

create(name, key, value, ...) create an nlist from the named structure template
and provided key/value pairs

length(resource), length(string) returns the length of the given resource or string

match(regexp, string) return boolean indicating if the given string
matches the given regular expression

matches(regexp, string) return a list of matched groups based on the given
regular expression and string

to_string(value), to_long(value),
to_boolean(value), to_double(value)

type conversion functions

is_string(value), is_list(value),
is_nlist(value), ...

type checking functions return a boolean if the ar-
gument is of the indicated type

debug(message),
traceback(message), error(message)

debugging functions; debug and traceback
will return undef; error will abort the process-
ing

value(path) return the value at the named path; the path may
be an absolute or external path

In addition to the built-in functions, users can also define functions. The function statement allows
any DML block to be treated as a function. After the function is defined, it may be called within any
subsequent block just as a built-in function could. For example, the following will take the average
of a sequence of numbers.

object template function-test;

function average = {

 # Can't take an average without at least one value.

Pan Tutorial

17

 if (ARGC == 0) {
 error('at least one argument must be given to average()');
 };

 # Iterate over all of the values and keep running sum.
 sum = 0.0;
 foreach (key; value; ARGV) {

 # Ensure that the argument is a number.
 if (! is_number(value)) {
 error('non-numeric value encountered: ' + to_string(value));
 };
 sum = sum + value;
 };

 # Now give back the average.
 sum/ARGC;
};

'/result' = average(1, 2.5, 3, 5);

$ panc --xml-style=text function-test.tpl
$ cat function-test.txt
+-profile
 $ result : (double) '2.875'

Functions are commonly used to perform some common algorithm or to do some validation. If the
function is used for validation, then the function must return a boolean value. Note that all variables
within the scope of a function are local to the function and cannot influence (or be influenced by)
variables of the same name at other levels of the call stack.

8.4. Flow Control
In the DML, there are three expressions that can alter the normal sequential flow of execution: an if
expression for branching, a while expression for looping, and a foreach expression for iteration.
All of these are expressions that return a value. The value of each expression is the value of the last
expression evaluated in the if, while, or foreach block. If the block is never executed, then the
expression returns undef.

The syntax for the if and while expressions are the same as in most programming languages. The
syntax for the foreach expression requires an example:

object template foreach-test;

'/nlist-result' = {
 result = '';

 x = nlist('a', 1, 'b', 2, 'c', 3);

 foreach (key; value; x) {
 result = result + key + " -> " + to_string(value) + " ";
 };

 result;
};

'/list-result' = {
 result = '';

Pan Tutorial

18

 y = list('alpha', 'beta', 'gamma');

 foreach (key; value; y) {
 result = result + to_string(key) + " -> " + value + " ";
 };

 result;
};

$ panc --xml-style=text foreach-test.tpl
$ cat foreach-test.txt
+-profile
 $ list-result : (string) '0 -> alpha 1 -> beta 2 -> gamma '
 $ nlist-result : (string) 'a -> 1 b -> 2 c -> 3 '

The foreach expression iterates over all of the children of the given resource, x and y in this ex-
ample. For each child, the iteration variables (key and value here) are assigned the key/index and
value of the child. Any valid names can be used for the iteration variables.

8.5. Exercises
1. Define a function that pushes a value on the end of a list. What happens if the list does not exist?

2. Define a function that pushes a value on the end of SELF. What happens if the list does not exist?
If the function does not work in this case, can you create a version that does?

9. Software Configuration
On a machine managed by quattor, a daemon accepts notifications of configuration changes and then
runs a set of "components" to affect those changes on the client. A component is simply a script that
reads configuration information from the machine profile and then makes appropriate changes to the
services running on the client. This includes starting, stopping, or restarting services as appropriate.
Although it would be possible to create a single component that handles all of the machine configura-
tion, this is neither scalable nor maintainable. Usually, a single component is responsible for a single,
low-level service.

In our scenario, there will be four components to configure: NFS, Torque, users, and firewall. The
author of a component defines an appropriate configuration schema for the service and provides that
schema via a pan language template. System administrators can then use that schema to set the service
parameters via the pan language.

9.1. Components
Components are built on a common skeleton and share some common parameters. Our reduced exam-
ple will have an flag to indicate if a component is active and lists of dependencies. An overly simplistic
schema might be the following:

type component = extensible {
 active : boolean = true
 pre ? string[]
 post ? string[]
};

A series of components could be bound to a particular part of the configuration tree. The usual schema
used with quattor puts the components at /software/components/ as an nlist; the bind statement
to accomplish this is:

Pan Tutorial

19

bind '/software/components' = component{};

Each component is identified by a unique key in this nlist.

The extensible keyword on the record definition is extremely important. We expect each compo-
nent to define additional parameters specific to the service it treats. Without the extensible key-
word, the pan compiler would only allow the three children that are explicitly defined in the compo-
nent type definition; the extensible keyword allows other children to exist.

The above definition is overly simplistic because it does not validate the component's values very
well. The active flag is fine; however, the pre- and post-dependencies should be limited to other active
components specified in the configuration. Similarly, any additional parameters should be validated
as much as possible to avoid having invalid parameters used to configure services. The next chapter
will concentrate on the more advanced validation features available in the pan language.

9.2. NFS Component Schema
The Network File System (NFS) is a service that allows a machine to export certain paths that can
then be mounted by other machines within their file systems. Correspondingly, there are two parts of
the NFS configuration: one part for a server that exports paths and one part for the client that mounts
those remote file systems. Note that any given machine can be a client, server, or both. The following
schema captures the parameters needed for NFS configuration:

Type that defines path and authorized host for NFS server export.
type nfs_exports = {
 'path' : string
 'authorized_host' : string
};

Type containing parameters to mount remote NFS volume.
type nfs_mounts = {
 'host' : string
 'path' : string
 'mountpoint' : string
};

Allows lists of NFS exports and NFS mounts (both optional).
type config_nfs = {
 include component
 'exports' ? nfs_exports[]
 'mounts' ? nfs_mounts[]
};

Assuming the component type has been defined and bound to /software/components as an nlist
and the config_nfs type has been defined, the following will ensure that the /software/compo-
nents/nfs path meets both the component and config_nfs types:

bind '/software/components/nfs' = config_nfs;

Note that with the above bind, this implies that this path has two type definitions associated with
it: component and config_nfs. The pan language allows multiple types to be defined to a path and
enforces all of them. That is, all of the types bound to a path must be valid for the configuration as a
whole to be valid. Be careful not to assign multiple incompatible types to the same path. For example,
the following will never lead to a validated configuration:

object template never-valid;

bind '/result' = string;
bind '/result' = boolean;

Pan Tutorial

20

'/result' = 'OK';

because either one or the other of the bound types will fail. Real-world conflicts of this type are usually
more complicated but, at the most basic level, arise because of incompatible primitive types being
assigned to the same path.

As can be seen above, allowing multiple types to be bound to the same path permits pan to have
functionality similar to object inheritance. In reality, this is a "duck" typing system that simply checks
that all of the bound types are simultaneously satisfied.

9.3. Torque Component Schema
Torque is a commonly-used batch system. Like the NFS configuration, there are client and server
aspects to running Torque. One difference, however, is that a client can be associated with only one
server. The server configuration consists of a set of queues and list of client nodes associated with
the server. The client configuration simply indicates if the client's state and the name of the server.
The schema is:

Torque server information.
type torque_server = {
 'queues' : string[1..]
 'workers' ? string[]
};

Torque client information.
type torque_client = {
 'server' : string
 'state' : string with match(SELF, 'open|closed|drain');
};

Overall configuration.
type config_torque = {
 include component
 'server_params' ? torque_server
 'client_params' ? torque_client
};

This can be bound to part of the configuration schema like was done for NFS. In our example, will
will use the path /system/components/torque.

9.4. Schemas for Users and a Firewall
In a complete system there are a large number of services that need to be configured. Many of these
services share common needs for low-level configuration of things like the users and open ports on
the firewall. These are included just to show some of the best practices when organizing configuration
templates. The simplified schemas are:

Simple user configuration component.
type config_users = {
 include component
 'uid' : long(0..){}
};

Simple firewall configuration component.
type config_firewall = {
 include component
 'open' : long(0..)[]

Pan Tutorial

21

};

This allows usernames to be associated to a given UID and to specify open ports in the firewall.

9.5. Component Configuration Organization
Pan puts very few constraints on the organization of the configuration information for components.
Nonetheless, some best practices have arisen with use of the system and now almost every compo-
nent exposes two pan templates: schema.tpl and config.tpl. The schema template contains
a component's schema definition and any associated validation functions. The other file contains the
default configuration for the component, such as standard dependencies, global variables, etc. The
schema file for Torque might look like the following:

declaration template component/torque/schema;

include { 'quattor/structure_component' };

Torque server information.
type torque_server = {
 'queues' : string[1..]
 'workers' ? string[]
};

Torque client information.
type torque_client = {
 'server' : string
 'state' : string with match(SELF, 'open|closed|drain');
};

Overall configuration.
type config_torque = {
 include component
 'torque_user' ? string
 'server_params' ? torque_server
 'client_params' ? torque_client
};

and the associate default configuration file:

unique template component/torque/config;

Define the schema for the Torque configuration.
include { 'component/torque/schema' };

Define some default port numbers.
variable TORQUE_CLIENT_PORT ?= 9999;
variable TORQUE_SERVER_port ?= 9998;

Bind the schema to a particular place in the configuration tree.
bind '/software/components/torque' = config_torque;

Set the component to be active by default.
'/software/components/torque/active' ?= true;

To ensure that the necessary schema is defined and to ensure that all of the default actions have been
taken, it is wise to always include the config.tpl file before each block of Torque configuration
statements. Notice that these templates are defined as a declaration and unique templates, re-
spectively, to avoid any performance penalty for including these files repeatedly. Usually a system
administrator would only include the config.tpl file directly.

Pan Tutorial

22

Distributions of templates usually go one step further and define templates for common service con-
figurations. For example, one could create a Torque server that does the default configuration for a
machine running a Torque server. Take the following example:

unique template service/torque/server;

include { 'component/torque/config' };

Change the default port, setup the queues, and identify the worker nodes.
variable TORQUE_SERVER_PORT = 1212;
'/software/components/torque/server_params/queues' = list('short', 'medium', 'long');
'/software/components/torque/server_params/workers' = list('worker1.example.org', 'worker2.example.org');

Open the correct port on the firewall.
include { 'component/firewall/config' };
'/software/components/firewall/open' = {
 SELF[length(SELF)] = TORQUE_SERVER_PORT;
};

Setup the user for torque.
include { 'component/users/config' };
'/software/components/users/uid/torque_mgr' = 1000;

This template would do all that is necessary to configure a Torque server, including the configuration
of the low-level services. A system administrator wanting to use this, would then create an object
template like the following:

object template torque-server;

... some machine hardware configuration ...

Run a Torque server on this machine.
include { 'service/torque/config' };

... inclusion of other high-level service configurations ...

Using the conventions described above allows maximum reuse of the configuration information and
makes it easy to mix-and-match high-level services for a particular object template.

10. General Validation
The greatest strength of the pan language is the ability to do detailed validation of configuration pa-
rameters, of correlated parameters within a machine profile, and of correlated parameters between
machine profiles. Although the validation can make it difficult to get a particular machine profile to
compile, the time spent getting a valid machine configuration before deployment more than makes up
for the time wasted debugging a bad configuration that has been deployed.

Simple validation through the validation of primitive properties and simple resources has already been
covered when discussing the pan type definition features. This chapter deals with more complicated
scenarios.

10.1. Advanced Parameter Validation
Often there are cases where the legal values of a parameter cannot be expressed as a simple range. The
pan language allows you to attach arbitrary validation code to a type definition. The code is attached
to the type definition using the with keyword. Consider the following examples:

type even_positive_long = long(1..) with (SELF % 2 == 0);
type machine_state_enum = string with match(SELF, 'open|closed|drain');

Pan Tutorial

23

type ip = string with is_ipv4(SELF);

The validation code must return the boolean value true, if the associated value is correct. Return-
ing any other value or raising an error with the error function will cause the build of the machine
configuration to abort.

Simple constraints are often written directly with the type statement; more complicated validation
usually calls a separate function. The third line in the example above calls the function is_ipv4.
This is a user-defined function that could look like:

function is_ipv4 = {
 terms = split('\.', ARGV[0]);
 foreach (index; term; terms) {
 i = to_long(term);
 if (i < 0 || i > 255) {
 return(false);
 };
 };
 true;
};

A real version of this function would probably do a great deal more checking of the value and probably
raise errors with more intuitive error messages.

10.2. Validation of Correlated Configuration Parame-
ters

Often the correct configuration of a machine requires that configuration parameters in different parts
of the configuration are correlated. One example is the validation of the pre- and post-dependencies
of the component configuration. It makes no sense for one component to depend on another one that
is not defined in the configuration or is not active.

The following validation function accomplishes such a check, assuming that the components are bound
to /software/components:

function valid_component_list = {

 # ARGV[0] should be the list to check.

 # Check that each referenced component exists.
 foreach (k; v; ARGV[0]) {

 # Path to the root of the named component.
 path = '/software/components/' + v;

 if (!exists(path)) {
 error(path + ' does not exist');
 } else {

 # Path to the active flag for the named component.
 active_path = path + '/active';

 if (!(is_defined(active_path) && value(active_path))) {
 error('component ' + v + ' isn't active');
 };

 };

Pan Tutorial

24

 };

};

type component_list = string[] with valid_component_list(SELF);

type component = extensible {
 active : boolean = true
 pre ? component_list
 post ? component_list
};

It also defines a component_list type and uses this for a better definition of a the component type.
This will get run on anything that is bound to the component type, directly or indirectly. Note how
the function looks at other values in the configuration by creating the path and looking up the values
with the value function.

The above function works but has one disadvantage: it will only work for components defined below
/software/components. If the list of components is defined elsewhere, then this schema defi-
nition will have to be modified. One can usually avoid this by applying the validation to a common
parent. In this case, we can add the validation to the parent.

function valid_component_nlist = {

 # Loop over each component.
 foreach (name; component; SELF) {

 if (exists(component['pre'])) {
 foreach (index; dependency; component['pre']) {
 if (!exists(SELF['dependency']['active'] ||
 SELF['dependency']['active'])) {
 error('non-existant or inactive dependency: ' + dependency);
 };
 };
 };

 # ... same for post ...

 };

};

type component = extensible {
 active : boolean = true;
 pre ? string[]
 post ? string[]
};

type component_nlist = component{} with valid_component_nlist(SELF);

This will accomplish the same validation, but will be independent of the location in the tree. It is,
however, significantly more complicated to write and to understand the validation function. In the real
world, the added complexity must be weighed against the likelihood that the type will be re-located
within the configuration tree.

The situation often arises that you want to validate a parameter against other siblings in the machine
configuration tree. In this case, we wanted to ensure that other components were properly configured;
to know that we needed to search "up and over" in the machine configuration. The pan language does

Pan Tutorial

25

not allow use of relative paths for the value function, so the two options are those presented here.
Use an absolute path and reconstruct the paths or put the validation on a common parent.

10.3. Cross-Machine Validation
Another common situation is the need to validate machine configurations against each other. This
often arises in client/server situations. For NFS, for instance, one would probably like to verify that
a network share mounted on a client is actually exported by the server. The following example will
do this:

Determine that a given mounted network share is actually
exported by the server.
function valid_export = {

 info = ARGV[0];
 myhost = info['host'];
 mypath = info['path'];

 exports_path = host + ':/software/components/nfs/exports';

 found = false;
 if (path_exists(exports_path)) {

 exports = value(exports_path);

 foreach (index; einfo; exports) {
 if (einfo['authorized_host'] == myhost &&
 einfo['path'] == mypath) {
 found = true;
 };
 };

 };
 found;
};

Type that defines path and authorized host for NFS server export.
type nfs_exports = {
 'path' : string
 'authorized_host' : string
};

Type containing parameters to mount remote NFS volume.
type nfs_mounts = {
 'host' : string
 'path' : string
 'mountpoint' : string
} with valid_export(SELF);

Allows lists of NFS exports and NFS mounts (both optional).
type config_nfs = {
 include component
 'exports' ? nfs_exports[]
 'mounts' ? nfs_mounts[]
};

To do this type of validation, the full external path must be constructed for the value function. This
has the same disadvantage as above in that if the schema is changed the function definition needs to

Pan Tutorial

26

be altered accordingly. The above code also assumes that the machine profile names are equivalent
to the hostname. If another convention is being used, then the hostname will have to be converted to
the corresponding machine name.

It is worth noting that all of the validation is done after the machine configuration trees are built.
This allows circular validation dependencies to be supported. That is, clients can check that they are
properly included in the server configuration and the server can check that its clients are configured.
A batch system is a typical example where this circular cross-validation is useful.

10.4. Exercises
1. Devise a schema for a client/server system that you are familiar with.

2. Add validation for all of the parameters.

3. Create the config.tpl and schema.tpl files for this system.

4. Create client and server files for this service. Incorporate them in object templates and ensure that
they behave as expected.

5. Add validation to verify the client and server machine configurations against each other.

6. Create the validation functions necessary to do the circular cross-validation described for the
Torque batch system.

11. Conclusions
This tutorial covered the highlights of the pan language. After finishing this tutorial, you should be able
to create and maintain a site configuration written in the pan language. This tutorial, however, did not
cover any of the configuration conventions of a particular community. Ask others in the community
about common conventions (e.g. on the Quattor mailing list or the Quattor Working Group (QWG)
wiki); links to other sources of information can be found on the Quattor web site. You can also find
more information about the pan language and the pan compiler in the other documents distributed
with the compiler.

