
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2005; (in press)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.962

Crunching real data on the
Grid: practice and experience
with the European DataGrid

D. Groep1, J. Templon1,∗,† and C. Loomis2

1NIKHEF, P.O. Box 41882, 1009 DB Amsterdam, The Netherlands
2Laboratoire de l’Accélérator Linéaire (LAL), Université Paris-Sud, Bâtiment 200, 91898 Orsay Cedex,
France

SUMMARY

The D0 experiment has used the European DataGrid (EDG) testbed to reprocess real data obtained from
the Tevatron collider at the Fermi National Accelerator Laboratory. Pushing the use of the EDG software
beyond feasibility studies has produced a set of recommendations for authors of experiment-level software,
for producers of middleware and for designers of Grid systems. This paper describes the D0 experience
with the EDG software and the resulting recommendations. Copyright c© 2005 John Wiley & Sons, Ltd.

KEY WORDS: Grid; European Data Grid; middleware; large-scale deployment; workload management;
Grid architecture; information system

‘Measurement is a crucial component of performance improvement since reasoning and
intuition are fallible guides . . . ’

Brian Kernighan and Rob Pike, in The Practice of Programming (1999)

1. INTRODUCTION

In the third quarter of 2003, the D0 Experiment Collaboration [1] reprocessed its experimental data
from the most recent running periods. D0 is a high-energy physics (HEP) experiment located at the
Tevatron collider at the Fermi National Accelerator Laboratory (FNAL). Physicists used the results
of this reprocessing to prepare the physics results of the D0 experiment reported at international
conferences. This article is based on an effort within the European DataGrid (EDG) project to perform
part of the D0 reprocessing on the EDG testbed. The effort’s use of ‘real’ data distinguishes it from
most other HEP Grid studies to date, which have only used Grids to generate simulated data.

∗Correspondence to: J. Templon, NIKHEF, P.O. Box 41882, 1009 DB Amsterdam, The Netherlands.
†E-mail: templon@nikhef.nl

Copyright c© 2005 John Wiley & Sons, Ltd.
Received 2 September 2004

Revised 17 February 2005
Accepted 28 March 2005



D. GROEP, J. TEMPLON AND C. LOOMIS

The focus on ‘real work’ brought with it the following concerns.

Practicality. How much added value does the Grid provide? How much extra work does it cost?

Bookkeeping. Were all data correctly processed? Where and why did jobs fail?

Deadlines. Will the results be ready six weeks before the winter conferences?

Pushing the Grid beyond feasibility studies and exposing a Grid toolkit to real-life working
conditions indicate the state of the art in Grid computing and suggest directions for future improvement.

We note here that the current article is driven almost entirely by practical experience in a large-scale
deployment. It was impractical for us to investigate more than one Grid toolkit during this project.
We hope that such experience reports will shortly appear from other authors and that the reader will
therefore forgive our lack of discussion of other Grid software suites.

2. THE D0 REPROCESSING TASK

The work on which the current article is based dealt with the reprocessing of collision data from the
D0 experiment. Processing and the subsequent reprocessing data refers to the analysis and reanalysis
of the data collected from the thousands of particle detectors deployed as part of the experiment.

2.1. Processing and reprocessing

The data being analyzed are typically recorded whenever the front-end computers, scanning the
detector outputs, identify a particularly interesting combination of signals. The data recorded after
such a ‘trigger’ comprise an event. Such an event is physically recorded as a large set (approximately
1 MB) of tuples of numbers. Each second, the experiment records around 100 of these events.

Physicists design algorithms which combine the event information with a geometric model of the
detectors and calibrations of those detectors to infer physical properties of the initial particle collision.
Physicists process the data using these algorithms to perform their analyses.

Reprocessing refers to the situation where this process has already been performed, but is being
performed again. This typically happens when the research team has refined the algorithms, the
geometric model or calibrations. In the current case, the main improvement for D0 was in the subset
of algorithms used for particle trajectory reconstruction.

2.2. The reprocessing activity

Reprocessing was performed at several sites or ‘clusters’. The reprocessing activity at each of these
clusters proceeds along the following general lines.

1. The reprocessing team at the cluster receives an assignment from the production manager.
The assignment comes as a list of projects, each project containing of the order of 70 data files
that require processing. Each data file contains 700 MB of information on average. Processing a
file takes about 12 hours on a 1 GHz Pentium machine.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; (in press)



CRUNCHING REAL DATA ON THE GRID

2. The cluster team contacts the D0 Data Management System (called SAM, for Sequential data
Access via Metadata) and retrieves a project, meaning all the necessary files are transferred to
the cluster site.

3. Jobs are submitted to the cluster’s computational facility to process the files.
4. The cluster team uses SAM to store the files produced by the reconstruction program.

2.3. Reprocessing implementation on the EDG testbed

In the EDG effort, the entire EDG testbed functioned as a D0 cluster. The ‘cluster team’ was located
at NIKHEF. To perform the reprocessing on EDG resources, machinery had to be devised for the
following processes:

1. making the input data files available on the EDG Data Management System (DMS);
2. adapting the D0 reconstruction software and environment to work on EDG resources;
3. distributing this adapted software to nodes running the reconstruction jobs;
4. monitoring the progress of the jobs and bookkeeping of the results;
5. transferring the reprocessed results back into the SAM system.

Jobs were submitted to the EDG ‘cluster’ using the standard EDG job-submission tools.
For interested readers, the final analysis of the EDG software by end-users [3] contains a full

description of how the reprocessing was implemented.

3. THE EDG SOFTWARE AND INFRASTRUCTURE

The European Data Grid project had the goal of making a real large-scale, widely-distributed, multiple-
community Grid system. Part of the EDG work concerned the construction of software that enabled
the system; another part concerned the engineering and construction of a pan-European testbed that at
its peak encompassed some 40 sites across Europe and harnessing more than 1000 CPUs.

The EDG software made significant use of technology from the Globus and Condor projects;
the Globus Grid Security Infrastructure (GSI) was used almost uniformly for authentication and
authorization (for transfer of both data and computational jobs). Condor-G was used for persistent
workload queue handling distributed task management.

On top of these two products, the EDG software provided extra functionality in several areas.
Extensive information is available on these components [2]; we present a short summary below.

• The Resource Broker accepted job submission requests from authorized users, performed
matchmaking between the user request and the available resources, and passed the request and
the selected resource on to the Condor-G layer.

• The Information System was a distributed network consisting of information producers located
on machines providing storage and computational resources. Either Grid services or humans
could connect to the system as consumers and find information about available resources.
This system was used by the Resource Broker during the matchmaking phase. This system is
described in more detail in Section 7.2.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; (in press)



D. GROEP, J. TEMPLON AND C. LOOMIS

• The Replica Location Service consisted mostly of two catalogs. The Local Replica Catalog
(a misnomer since there was only one centralized instance) stored mappings of physical locations
(hostname and path) of files to a globally-unique identifier. A Replica Metadata Catalog stored
mappings of these unique identifiers to user-definable logical file names. Metadata (key-value
pairs) could also be attached to these logical file names and the catalog could be searched using
these metadata keys. There was also a Replica Optimization Service which could predict access
times to various physical copies of a file, allowing users or their programs to select the fastest
copy.

Many of these packages were adopted by the Large Hadron Collider (LHC) Computing Grid (LCG)
project at CERN, and are still in heavy use (and under continual improvement) as of this writing.

4. STRUCTURE OF THE REMAINDER OF THIS DOCUMENT

In the following sections, we describe the issues encountered in designing, implementing and using the
machinery described in the list above. We use this information to draw conclusions about how work
should, and in some cases should not, be carried out on Grid facilities, and to make suggestions for
future developments by designers and implementers of both Grid middleware application frameworks.
In most cases, the recommendation being made in a section is concisely stated in the title of the section.

5. GETTING DATA ONTO A GRID

5.1. Data services need thin client APIs

Programs running on Grid computing resources often need access to various kinds of data. These data
are very frequently not locally accessible on the node which runs the program. The Grid model is
that the data are ‘in the Grid’, meaning that they can be accessed relatively transparently using Grid
services.

Current trends indicate that multiple ‘Grids’ will exist, and D0 is already confronted with this
situation. As explained in Section 2, the input data were originally hosted at FNAL. These data can be
easily accessed via SAMGrid tools. The natural approach was to install SAMGrid data-access client
tools along with the D0 software, fetching the data directly from the hosting site and avoiding manual
cross-registration and transfer into the EDG facility.

Unfortunately, the SAM system has been designed and deployed with a different strategy in mind‡.
Each site participating in SAMGrid must have a ‘SAM station’ installed. Client connections on a site
talk to the local SAM station, which then arranges for the transfer to and from other stations. If the
current work were to have used SAM data management, each participating site would have to install a
SAM station.

‡It turned out to be possible to run a thin SAM client without a local server present. Some of the software had even already been
written. This was not common knowledge among the D0 team, and was discovered only after the current study was finished.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; (in press)



CRUNCHING REAL DATA ON THE GRID

The EDG project fortunately took the approach of having services accessed via lightweight client
tools and installing those tools on worker nodes. These client tools can make use of the EDG data-
management services possible even in the absence of any local EDG daemons. (One exception to this
is R-GMA (Relational Grid Monitoring Architecture), the EDG information system, which requires
access to a site-local server to query the information system.)

The two approaches can be perhaps more effectively contrasted by making an analogy with browsing
the Web. Anyone can browse the Web, as long as they have a Web client tool such as Mozilla or Internet
Explorer installed. This is like the EDG approach, and the one we feel to be most useful to experiments.
The SAMGrid approach is analogous to allowing Web browsing only for sites at which an http server
is present.

5.2. Data distribution is important

A typical high-energy physicist first writes analysis software and tests this software locally on a small
number of files. Once this software functions properly, the physicist runs the complete analysis in
parallel by submitting hundreds or thousands of jobs each accessing different data files. The large
simultaneous submission of jobs usually implies that a large number of these jobs will also start and
run simultaneously. If the data is concentrated on a single storage service, then this places a large
burden on that service and the network to that service.

Stressing a single service such as this increases job failure rates, wastes resources and increases
bookkeeping costs. One way to avoid this problem on the Grid is to ensure that the experimental data
are widely distributed. This is both easy and completely under the control of the experiment itself.
It could be accomplished directly while first transferring data into the Grid, or later by way of data
replication. Alternatively, one could provide reservation services in the middleware. Doing so would
require that the jobs specify exactly what data are needed, obtain a reservation for the transfer from the
storage service and communicate this reservation to the computing resource running the job. With the
current state of the Grid software, data distribution (or replication) is the only viable near-term solution.

Centralization of data applies equally well to databases. During the latest evaluation of the EDG
software, other experiments have experienced problems with job failures when accessing a central
database [3]. Similarly, the Resource Broker accesses the state of the Grid resources through a
centralized database. In earlier releases the Metadata and Discovery Service (MDS) from the Globus
Toolkit [4] was used for this database. Poor query performance of the implementation caused large
numbers of failed jobs [5]. Recent EDG releases use an OpenLDAP implementation which performs
better. However, the centralized database problem still exists and has simply been pushed to a larger
scale.

To maximize the performance of the Grid, both distributed data and distributed databases are
required.

6. GETTING SOFTWARE ONTO THE GRID

6.1. A Grid is not a dedicated cluster

HEP users are accustomed to having full control over their clusters. Owing to the direct control over
resources that experiments have historically enjoyed, the software suites of experiments tend towards
expedient rather than portable solutions. Examples include:

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; (in press)



D. GROEP, J. TEMPLON AND C. LOOMIS

• installing unusual third-party software;
• using experiment- or laboratory-specific installation or setup tools;
• programming to specific versions of third-party software.

All of these reduce the portability of the code and make operation in a Grid environment more difficult.
The following sections give several concrete examples where expedient solutions cause problems in
the Grid context.

6.1.1. Third-party software packages

The benefits of using third-party packages must be weighed against the additional package management
costs incurred when those packages are not pre-installed on the computing resources. Many third-party
packages are already installed because they add functionality that is missing in the standard Unix
operating-system toolbox. MySQL [6] is one of these; relational databases are used for many purposes
by both the Grid middleware and the experimental software. As there is no ‘standard’ relational
database tool distributed with the Unix operating system, this is a clear case where the benefits of
third-party software outweigh the management costs.

Software authors, however, sometimes use ‘special’ third-party packages to make certain operations
more convenient. An example is use of the ‘Z’ command shell (zsh) by one experiment’s software
framework. The motivation for use of the zsh was its ability to do arithmetic commands embedded in
the shell. This is a weak motivation to require a special shell, as the same effect can be accomplished
using the standard Borne shell (/bin/sh) and the POSIX-standard bc command.

The convenience brought by a slight simplification in arithmetic evaluations is heavily offset by
dealing with package management for this special shell. The experiment software installation system
will have to test whether the shell has already been installed and, if not, must install it as part of the
application suite. In the latter case the entire suite will have to be compatible with the shell located in
an arbitrary location instead of the usual /bin/zsh location. Further problems can arise since parts
of the login sequence at the remote site (necessary to configure the account for access to Grid services)
sometimes fail for shells other than the standard /bin/sh.

6.1.2. ‘Setup’ packages

Many HEP laboratories or institutes support multiple experiments and have developed flexible tools
to configure the user’s software environment. The FNAL package manager UPS/UPD provides a good
example. With this tool, one can configure a user environment to use, for example, the ROOT data-
analysis package [7] by issuing the commandsetup root. This modifies the user’s command search
path to include the ROOT executable directory and defines some other environment variables needed
by ROOT.

Since experiments are used to complete control over computing resources, such commands are
often deeply embedded within the experiment’s computing framework. Consequently, the experimental
software fails when the setup tool is not installed, even if the necessary adjustments to the environment
have already been made by other means.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; (in press)



CRUNCHING REAL DATA ON THE GRID

6.1.3. Specific package versions

In a Grid context—a distributed computing environment operated by many different institutions with
different aims—the versions of installed software will vary from site to site.

Application software which requires a specific version of a package effectively reduces the number
of resources available to that application. To maximize the available resources, the application should
only use mainstream features available in all of the deployed versions of a package. Moreover, the
application should work around bugs in those versions. Writing code which is insensitive to the
software version requires significant extra work from the author. There is a trade-off between the work
involved to increase the portability and the benefits from an enlarged base of computing resources.
Working in a Grid environment pushes the balance-point towards increased portability.

For Grid middleware, native language APIs may cause conflicts with application software.
For example, C++ APIs are often dependent on the exact compiler version and vendor used to produce
the API libraries. This choice may conflict with that used by the application itself or with that used by
other middleware services. To maximize the utility of the middleware services, the creator of a service
should provide a thin, language-neutral client interface which can be easily rebuilt by applications as
needed. The recent move to Web-service specifications and bindings is a positive step in this direction.

Overall, application software authors should program to minimize explicit version dependencies in
external software, and middleware authors should work to make their services universally accessible.

6.2. Installation does not scale

Application software differs from standard system software in several important aspects:

• an experiment’s full set of application software can be large, sometimes exceeding the size of
the operating system;

• versions of the application software change rapidly;
• several versions of the application software are in simultaneous use on the same machine by

different users;
• users often require ‘slightly modified’ versions of the application software for their own use;
• the experiment supplies special versions of standard system packages either because they contain

required bug fixes or because the application software has been certified against the special
version.

Owing to these differences, standard software installation and management techniques do not work
well for application software.

The application software for D0 was 0.6 GB for the earlier EDG releases and has since grown to
2.3 GB as of this writing; similarly, the ALICE (a HEP experiment at the LHC at CERN) software
has grown from 2.3 to 4.0 GB. These are single versions of the application software. Projecting to
a Grid containing thousands of nodes, covering hundreds of sites and supporting dozens of different
experiments hints at the needed level of scalability for application software installation.

EDG used two techniques: packaged applications distributed as part of the release and software
installed dynamically by and for a single job. Distributing the software as part of the release ensured a
wide deployment of the application software with minimal effort on the part of the site administrator.
However, this limited the virtual organization to a single version and updates were only applied with

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; (in press)



D. GROEP, J. TEMPLON AND C. LOOMIS

new EDG releases. In contrast, having a job install its own software was extremely flexible, allowing
the job to tailor its software environment to its precise needs. The price of the increased flexibility was
the larger use of disk resources and a further delay in the start of a job as the software was downloaded.
The increased costs are more pronounced for shorter jobs.

The LCG has adopted an intermediate strategy in which dedicated areas in the file system are
reserved for each site’s supported experiments. A special user is then given write-access to that area
and is responsible for the installation of the experiment’s software. This shifts the burden of installing
and upgrading the software to the experiment. Having the software installed on each site removes the
installation costs encountered with having a job install the software itself.

However, when extrapolating to hundreds of sites, even the last solution will become unmanageable.
The only long-term solution is a dedicated application software installation system which caches
required software and, for a particular job, only makes visible the packages required by that job.
The cache needs to be able to automatically download packages required by a submitted job, lock
those packages (and dependent packages) while in use and remove packages which are no longer
required. Presenting the large number of packages needed by an application in a usable manner while
maintaining the ability to effectively manage the cache can only be achieved by using a virtual file
system for the application software. Such a system would allow the dynamic loading of application
software, be capable of caching to minimize redundant downloads of software and minimize wasted
resources from installed but unused software.

7. MONITORING

7.1. Distributed work needs distributed bookkeeping

The goal of HEP reprocessing is to produce a set of probabilities for certain types of nuclear reactions.
HEP theories are then used to compute, according to the theory, what these probabilities are ‘supposed’
to be. In this way one can judge how accurately the theories reflect physical reality.

Probabilities are calculated by ratios, dividing a number of trials into the number of times the trial
resulted in the phenomenon of interest being observed. In HEP terms, the number of successes is related
to the number of times the reaction of interest was found in the processed data. Formulated in this way,
it becomes obvious that one must ensure that all data acquired are correctly processed and accounted
for—otherwise the probabilities will be underestimated. In a distributed computing environment, new
mechanisms are required in order to keep track of the reprocessing. The scientist can no longer inspect
the file system of their local machine and verify that each data file has been processed. The scientist
needs at least two pieces of information:

1. an indication, for each data file being processed, whether the processing was successful; and
2. in cases of a failure to process a file, a clear indication of which file failed, so that the reprocessing

task can be resubmitted for this file.

The EDG toolkit was rather quickly found to be lacking for these purposes. There was one ‘Grid
job’ per input data file; each of these jobs had a unique identifier (the ‘jobid’) assigned by the Grid
scheduler. The scientist could query the scheduler and ask for the status of each of the tasks, based on
this jobid. However, in cases of failure, the jobid carried no information about which data file was being
processed by this job. Furthermore, the failure status was relatively coarse; we found several cases of

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; (in press)



CRUNCHING REAL DATA ON THE GRID

the reprocessing program having failed, but the scheduler reported success. From the scheduler’s point
of view, the job was correctly delivered to a worker node and the output was correctly retrieved, so
there was no failure.

The problem was solved by using the R-GMA system to provide bookkeeping. This is described in
the next section.

7.2. Success of R-GMA model

R-GMA provides a facility that, from the user’s perspective, is a Grid-wide distributed database.
The user (and their programs or agents) interact with the R-GMA system via SQL commands.
Both information queries, as well as information publishing (i.e. putting information into the database)
can be performed from any location—as long as the client tool has been informed of an entry point
(hostname of a server machine) into the system.

Information is published into the system via a producer process and information is extracted (queries
are performed) via consumer processes. The R-GMA system provides a mechanism to connect the
producers and consumers, across site boundaries, thereby creating the impression of a distributed
database. The D0 bookkeeping system used in this project was implemented via an archiver process.
Such a process consumes information published by the running jobs, transferring them to a back-end
relational database to make the information persistent; the process also produces (publishes into the
R-GMA network) data contained in the database whenever requested.

The most useful bookkeeping model was based around four events.

• Job submission: this records the jobid, submitting user, machine from which the job was
submitted, for each job.

• Job instantiation: this publication allows users to verify that the task has actually reached a
worker node. The name of the site (worker node location) is recorded, along with the actual
reprocessing command line and the jobid. This table thus provides the link between jobid and
data file.

• Reprocessing instantiation: this information is published immediately prior to starting the actual
reprocessing. Jobs that survive until this stage have successfully installed all of the software and
have successfully retrieved the data file to be processed. This table records the start time, worker
node ID, input data file name and some hardware information about the worker node such as
physical memory and clock speed.

• Job termination: information is published for this event immediately before terminating the job.
The amount of CPU time and wall-clock elapsed time are recorded, along with reprocessing
statistics and a reprocessing ‘exit status’.

An SQL table was defined within R-GMA to hold data for each of these events. A fifth table held
event records for failed commands, from the command wrapper described in Section 8.2.

8. TESTING AND DIAGNOSTICS

8.1. Whole Grid testing needs real applications

An official release of the EDG software suite typically went through many stages of testing before it
was deployed on the main infrastructure. The first round of testing was done by the developer(s) of

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; (in press)



D. GROEP, J. TEMPLON AND C. LOOMIS

each component. The amount of testing each component received at this stage varied widely according
to the styles of individual developers. The next round of tests came during component integration,
during which the various components were co-installed onto full systems and tested for interoperability.
When the integration team was satisfied, the full candidate release was deployed on the ‘development’
testbed, a miniature copy of the main infrastructure, distributed over three sites. An official test suite
was run and tests had to be passed before giving the green light for an official release.

One might expect that this would be sufficient to shake out all but the most devious bugs.
Unfortunately, the D0 effort was quite effective at ‘producing’ bugs in the software. This could be
traced to two effects:

1. there was enough D0 work to fill the entire infrastructure, exposing configuration bugs at some
sites not yet heavily used; and

2. the usage patterns in the test suite missed some important features of the real usage, hence
missing a few crucial bugs.

We provide below examples of both classes.

8.1.1. Example configuration problem

Many of the EDG client tools must be configured with entry points into the system. An example is
the R-GMA facility, for which one must specify a local server machine and a Grid-wide ‘registry’
machine. These entry points are typically configured at boot time by the automatic install system.

The entry points should also be upgraded whenever the tool itself (R-GMA in this instance) is
upgraded, but with the EDG automatic install system there were a few loopholes; it was possible in
some cases to upgrade a facility such as R-GMA without triggering the configuration scripts. In such
cases, the entry points sometimes had incorrect values. Typically the default entry points pointed at a
developer’s development workstation (for obvious reasons).

During the early part of the D0 work, about 10% of the worker nodes were found to have this
sort of dangling-developer configuration error. They were not found earlier since it is quite difficult
to artificially fill the entire infrastructure with test jobs, and even then the test jobs tended to be an
insufficient reflection of the real usage.

8.1.2. Example of insufficient test coverage

When the full-production tests started, about 20% of the jobs were failing, reporting that they could not
register their output file to the Storage Element machine at NIKHEF. This was traced to the edg-rm
command—the main client tool for EDG data management—invoking certain FTP transactions in
active mode. This mode requires both inbound and outbound network connectivity from the machine
on which the command is invoked.

The command had been extensively tested on the development testbed and this error was not
discovered. The reason is that all the machines on the development testbed had both inbound and
outbound network connectivity. However, the larger production clusters typically only have outbound
connectivity for worker nodes and the command failed at all sites for which inbound connectivity
was blocked. (Except NIKHEF where the execution nodes and storage element are within the same
firewall.)

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; (in press)



CRUNCHING REAL DATA ON THE GRID

8.2. Run crucial commands in wrappers

When a Grid job runs on a remote site, debugging is difficult for at least two reasons.

• Debugging is intrinsically hard because one cannot use typical debugging tools. These tools
are almost all designed to be executed from the same machine on which the command being
debugged is executing.

• Debugging is further complicated because the EDG workload management system splits the
standard output and standard error streams, returning them to the user as separate files. It is
practically impossible to re-merge the streams in such a way that it is obvious which command
caused an error.

This problem was solved by wrapping all but the most trivial commands. The wrapper executes
the command in a subshell and captures the output (both streams) in a temporary data buffer.
The command’s exit status is checked; if the command succeeded, its output was passed to the
job’s standard output stream and execution was returned to the main shell. When an error status was
observed, the last 256 characters of the buffered output were published, along with the entire command
string, the name of the node running the job, a string identifying the job, date and time, and the exit
status. These were published into the monitoring framework described in Section 7.2. This allowed an
unambiguous determination of:

• the job to which the failing command belonged;
• the exact command (including all arguments) that failed;
• the exact machine on which the command failed;
• the precise time at which it failed.

In practice, the last 256 characters of the output were also sufficient to determine the cause of the
failure.

9. PRODUCTION WORK

In the course of using the EDG software in a production environment several design limitations—both
globally and for individual services—became apparent. The following sections describe some of these
limitations.

9.1. Workload management requires useful resource information

All users desire to maximize the utility of the Grid for running their analyses; the Grid scheduler
(the Resource Broker in the case of EDG) attempts to match job requirements to available resources
and to schedule jobs on the most desirable, viable resources. To compare the relative desirability
of resources, the Grid scheduler must use common, absolutely-normalized measures. Two typical
measures are response time given in wall-clock time and cost given in real currency. A policy function
which converts an arbitrary job description into a response time or cost is also required.

Using job cost as a basis for scheduling requires a ‘banking’ system to maintain user balances
and affect payments for services. Such an infrastructure was not deployed on the EDG testbed;

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; (in press)



D. GROEP, J. TEMPLON AND C. LOOMIS

consequently, the default scheduling parameter was the response time measured in wall-clock time.
Specifically, the Estimated Traversal Time (ETT) is the time the next submitted job is expected to wait
in the queue before it starts to execute. The policy function to calculate the ETT for a site assumes
that the site implements a strict first in first out (FIFO) scheduling and that there is a single access
point to the site’s computing resources. The ETT is then an analytical calculation based on the number
of jobs in the queue and the wall-clock time limit on the queue. The site publishes the ETT into the
information system for use by the Resource Broker to schedule jobs.

The assumptions of the ETT algorithm (and the information schema used to publish it) do not model
the scheduling policies implemented on the various sites well. Specifically, sites typically:

• implement different priorities for different experiments or for individual users;
• create different queues accessing the same resources;
• impose limits on the number of jobs a single user can run simultaneously.

In the EDG system as tested, each of these results in poor job distribution.
We provide two concrete examples encountered within the EDG project. In the early stages of the

project, the ETT datum was based mostly on the number of free CPUs at a site; if there were free CPUs,
the estimated traversal time was zero, since in a strict FIFO system a new job would immediately be
started on one of these free CPUs. Problems arose at sites implementing process caps for the supported
experiments. Consider the situation where a site with 50 free CPUs places a limit of 10 concurrent
running jobs by members of the ATLAS experiment. After 10 ATLAS jobs have been submitted to the
site, an 11th or further job will wait in the queue until one of the first 10 has terminated, freeing a slot.
The ETT will remain at zero due to the remaining free CPUs, encouraging the scheduler to continue to
submit jobs to the site.

More current implementations of the ETT avoided this problem by basing the computation on the
number of queued jobs. This has the opposite effect, however; continuing on the example above, the
queued ATLAS jobs drive the ETT to a non-zero value. This value is correct for ATLAS, but not for
other experiments for whom free CPUs are still available. Hence, jobs which could run immediately
on the site are directed elsewhere and free CPUs go unused.

These sub-optimal distributions are not the fault of the Resource Broker, which is acting correctly
on the information it had. Instead it is the fault of the mismatch between the actual site policy and that
assumed by the EDG software (ETT algorithm and information schema).

There are three possible solutions to this problem:

1. strictly enforce the chosen scheduling algorithm on all sites;
2. publish the scheduling policy and all relevant information into the information system;
3. provide a service at each site which returns an estimate based on the provided job description.

The first solution is the easiest to implement, but is intrusive; intrusive because it does not allow pre-
existing resources to easily join the Grid and goes against the Grid philosophy of leaving policy
issues to the site. The second solution is feasible if the number of different policies is small and
the information to implement those policies readily available. This solution places the burden of the
calculation on the Resource Broker, but allows a scheduling decision to be made based solely on
published information. The third solution is most useful if there are a large number of different policies
and publishing the algorithms or information would be difficult. This solution places the burden of the

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; (in press)



CRUNCHING REAL DATA ON THE GRID

calculation on the resource itself, but means that the Resource Broker must query directly candidate
resources for the required information.

A prototype service [8] has been built and tested which is a hybrid between solutions 2 and 3 above.
This service, for each site where it is run, provided an ETT value for each supported experiment.
The system bases its estimates on the current and historical states of the computing resources and job
population. The prototype was tested on the EDG testbed and shown to improve the accuracy of the
traversal-time estimates by (on average) a factor of 20.

The important point of this experience is that a workload management system can make reasonable
choices only if either:

• the Grid scheduler is fully aware of site policies and has enough information about the workload
at each site to evaluate the outcome of submission of new jobs; or

• the sites publish, or provide upon request, estimates carrying enough information to allow the
scheduler to perform a simple unweighted ranking on these data.

9.2. The information system is the Grid

The information system provides two critical services to the Grid: a service index for locating various
Grid services and a monitoring service providing state information of those resources. Users consult
the service index to find appropriate services; services themselves use the index to find other services.
The Resource Broker uses the state information to optimize the scheduling of tasks.

These services are the core of the Grid and without them the Grid simply does not function.
Consequently there is a higher level of reliability and robustness required of the information system.
With R-GMA there was a long period during which various failure modes were discovered and fixed.
Ultimately, the system did achieve a good reliability which allowed the Grid as a whole to provide a
stable computing platform for users [9]. There was a similar burn-in period for MDS (Metadata and
Discovery Service) from the Globus Toolkit which was used in earlier EDG releases [5].

Even though a reasonable reliability was achieved, work must be done to further improve the
robustness of the system. R-GMA is less centralized than MDS, but still contains a centralized registry.
This represents a single point-of-failure for the Grid as a whole and must be eliminated. If a truly global
Grid is desired, then the information system must be inclusive of many different versions of services
running concurrently on the Grid. Moreover, it must demonstrate that it can scale up from the current
tens of sites to the thousands of sites in a World-Wide Grid.

9.3. Scalable service implementations

Scalability in real-world systems comes not only from scalable architectures, but depends as much on
a scalable implementation of that architecture. The approach promoted by many of the typical object-
oriented design patterns such as ‘factories’ and the modelling of the Grid as a service-based system
has led to architectures that involve a large number of interacting entities. At the architectural level,
such an approach helps in defining a clean separation of concerns and therefore cleaner interfaces and
a more maintainable design.

On the other hand, it is generally not a good idea to have the system design be a one-to-one mapping
of these architectural concepts. In particular, not every service should give rise to a new process running
on a server. Although such an implementation is very tempting in the prototyping phase (as no design

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; (in press)



D. GROEP, J. TEMPLON AND C. LOOMIS

work is needed to translate the architecture into implementation) it leads to immense problems in even
a limited-scale deployments such as the EDG testbeds.

Examples of such one-to-one translations are abundant: the job manager as shipped with the Globus
Toolkit version 2 provides a ‘guardian angel’ for every job that is sent to a computing element.
It allows the user to interact with the job once submitted, for example, to kill the job request or to
obtain output and error streams. Architecturally, this is a per-job service and should be addressable
as such. In practice, this was implemented as a stand-alone process, forked at job submission time,
to keep the state of the submitted job. The process remained active and consumed resources on the
computing element for the entire lifetime of the job—regardless of whether the job was queued,
running, suspended, etc. Submitting any sizeable amount of jobs thus resulted in as many processes on
the computing element head node as there were jobs running and queued on the computing element,
effectively bringing the entire system down.

Holding important state in processes has another severe disadvantage: if the process is killed, or if
the machine crashes, all state is lost. The ‘guardian angel’ example above applies here as well. When
a computing element crashes, jobs running on the worker nodes controlled by the computing element
usually do not crash. However, the job states (according to the workload management system) are
lost during the crash, which resulted in these running jobs being declared as ‘lost’ to the workload
management system.

Many of these issues have been identified and solved during the lifetime of EDG. The problem of the
job manager has been addressed by the Gridmanager developed by the Virtual Data Toolkit (VDT) [10]
and LCG [11] that uses a single process to manage multiple jobs on the computing element and keeps
the per-job state externally.

In other cases, advances in the operating system or the hosting environment may temporarily
alleviate the problems: handling of processes with many threads improved significantly in recent
(2.6) releases of the Linux kernel and, thus, together with improvements in the Java Virtual Machine,
implementations that use threads to keep state can defer facing these limitations. However, it seems
good practice not to rely too heavily on such ‘external’ improvements.

It is encouraging to see the Web Services architecture take stateless services as a basis. Of course,
Web Services have to date mostly been used in a transaction-oriented environment, where the Web
service basically provides interaction with a back-end database system.

Recent developments in the modelling of resources in the Web Services framework [12] are retaining
the idea of stateless services that represent the underlying resource. This leads more naturally to
implementations that respect the limitations imposed by typical hosting environments and operating
systems. In general, allocation of unmanaged memory structures is far cheaper and more scalable than
the management of threads or processes. A modelling of resources through a stateless interface favors
such scalable implementations.

9.4. Jobs need large temporary directories

The EDG toolkit uses the GASS mechanism of the Globus Toolkit to handle working directories
for jobs. Because there may be hundreds of jobs running under the same virtual user account on
a single site, the naming convention for the working directory contains a long string of random
characters. This assures a very small chance of file-namespace collisions between concurrent jobs.
Unfortunately it generates a long absolute path. Many HEP programs also have a long directory path

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; (in press)



CRUNCHING REAL DATA ON THE GRID

structure (relative to the home directory), and the combination of GASS working directory path plus
software relative path exceeds hard-coded directory path length limits in legacy (FORTRAN) programs
(e.g. 120 characters).

For this reason we chose to use the temporary directory (TMPDIR) feature as described in the
POSIX standard [13] and provided by the Portable Batch System (PBS) [14], coupled with a much
shorter randomization scheme based on the process ID of the running program. Sites could either use
PBSPro, or use OpenPBS patched to implement a transient TMPDIR per job, or could use some other
batch system and simply point TMPDIR to some suitably large amount of free space. We quickly found
that this temporary area needed to have roughly 5 GB of space per CPU for each worker node.

The advantage of the TMPDIR scheme is that some batch systems will completely remove the
directory immediately prior to terminating the job. On those sites not supporting this feature, jobs
began to fail after several days. This was traced to the occasional abnormal termination of a job
which bypassed the normal self-cleanup step and left a few gigabytes of data in the temporary space.
We learned to program a catch-all ‘cleanup’ exception into our job script; this only fails if the node
itself crashes.

10. CONCLUSIONS

The D0 data reprocessing software has been ported to the EDG testbed. The resources available
there have been successfully used to reprocess D0 data. The exercise has exposed problems with the
application software, Grid middleware and architectural design which can be used to improve future
Grid programs.

The Grid environment places a premium on portable programming. To ensure the greatest available
capacity, the application software must, to the largest extent possible, use widely available software and
mainstream features of that software. The code must be written to be insensitive to different versions
of external software—both in terms of features and of existing bugs. In a distributed environment, the
number of possible failures is much larger than for a small, dedicated cluster; the software must be
written to tolerate and recover from failures.

Even for highly portable applications, specific non-standard external packages will be needed.
To accommodate this, the Grid should provide a service which allows the user to dynamically
customize the software environment of the job. There must also be a method to discover standard
features of the local computing environment, such as the location and size of a scratch directory.

EDG has largely made the middleware services available from thin clients. This is a useful feature
which makes the services generally useful both inside and outside of a Grid environment. This should
be carried forward to future projects and extended by making the services’ bindings language-neutral.
The trend toward Web Services is a good move in this direction.

To achieve near-optimal use of resources on the Grid, the individual site policies must be accurately
transmitted to the Grid scheduler. Either the arbitrary site policies and necessary data must be
transmitted to the scheduler or the scheduler must consult sites to determine the cost or response time
for a particular job.

The Grid environment requires distributed data as well as distributed services for optimal operation.
Distributing the data avoids stressing any particular data server or the network connecting that server.
Distributing services which act as databases (such as the information system) has similar benefits.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; (in press)



D. GROEP, J. TEMPLON AND C. LOOMIS

Distributing the services improves the upward scalability of the Grid and allows a large number of
resources to be made available via the Grid. However, scalability in the other direction is also important.
Grid software which scales down to the workstation would permit users to develop and test applications
in the Grid context and reduce porting costs now associated with using the Grid.

The collaboration between the middleware developers and the end-users has been positive; both will
hopefully use the experience to improve both the applications and the middleware for future Grids.

ACKNOWLEDGEMENTS

This article is dedicated to the Integration Team Mailing List, a forum of hard-working DataGrid project
participants where most of these problems were identified, discussed, and solved.

REFERENCES

1. D0 Experiment Collaboration. http://www-d0.fnal.gov/ [10 May 2005].
2. Final evaluation key documents. CERN EDMS documents.

https://edms.cern.ch/414780/2/DataGrid-01-D1.7-0146-2 0.pdf (workload management);
https://edms.cern.ch/406379/2/DataGrid-02D2.6-406379-v2 0.pdf (data management);
https://edms.cern.ch/410810/4/DataGrid-03-D3.6-410810-4-0.pdf (information system) [10 May 2005].

3. European DataGrid (WP8). Report on the results of run #2 final application report: Assessment of the testbed by HEP
application during year 3. https://edms.cern.ch/file/428171/3/DataGrid-08-D8.4-0127-3-0-161203.pdf [10 May 2005].

4. The Globus Toolkit(TM). http://www.globus.org/ [10 May 2005].
5. European DataGrid (WP6). Evaluation of testbed operation: Overview of Testbed2 deployment and features.

https://edms.cern.ch/file/375744/2/D6.6-1.1.pdf [10 May 2005].
6. An open-source SQL database. http://www.mysql.com/ [10 May 2005].
7. A data-analysis package commonly used in high-energy physics laboratories. http://root.cern.ch/ [10 May 2005].
8. Li H, Groep D, Templon J, Wolters L. Predicting job start times on clusters. Proceedings of the 4th IEEE/ACM International

Symposium on Cluster Computing and the Grid (CCGRID2004), Chicago, IL, April 2004. IEEE/ACM Press: New York,
2004; 19–22.

9. European DataGrid (WP6). Final evaluation of testbed operations.
https://edms.cern.ch/file/414712/3.0/D6.8-3.0.pdf [10 May 2005].

10. Virtual Data Toolkit. http://www.cs.wisc.edu/vdt [10 May 2005].
11. LHC Computing Grid. http://lcg.web.cern.ch/LCG/ [10 May 2005].
12. Web Service resource framework. http://www-106.ibm.com/developerworks/library/ws-resource/ [10 May 2005].
13. POSIX Standard (IEEE Std 1003.1-2001).
14. Portable Batch System (PBS). http://www.openpbs.org/ [10 May 2005].

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; (in press)


	1 INTRODUCTION
	2 THE D0 REPROCESSING TASK
	2.1 Processing and reprocessing
	2.2 The reprocessing activity
	2.3 Reprocessing implementation on the EDG testbed

	3 THE EDG SOFTWARE AND INFRASTRUCTURE
	4 STRUCTURE OF THE REMAINDER OF THIS DOCUMENT
	5 GETTING DATA ONTO A GRID
	5.1 Data services need thin client APIs
	5.2 Data distribution is important

	6 GETTING SOFTWARE ONTO THE GRID
	6.1 A Grid is not a dedicated cluster
	6.1.1 Third-party software packages
	6.1.2 `Setup' packages
	6.1.3 Specific package versions

	6.2 Installation does not scale

	7 MONITORING
	7.1 Distributed work needs distributed bookkeeping
	7.2 Success of R-GMA model

	8 TESTING AND DIAGNOSTICS
	8.1 Whole Grid testing needs real applications
	8.1.1 Example configuration problem
	8.1.2 Example of insufficient test coverage

	8.2 Run crucial commands in wrappers

	9 PRODUCTION WORK
	9.1 Workload management requires useful resource information
	9.2 The information system is the Grid
	9.3 Scalable service implementations
	9.4 Jobs need large temporary directories

	10 CONCLUSIONS

