Master Projects

From Education Wiki
Jump to: navigation, search

Master Thesis Research Projects

The following Master thesis research projects are offered at Nikhef. If you are interested in one of these projects, please contact the coordinator listed with the project.


Last year's MSc Projects

The XENON Dark Matter Experiment: Data Analysis

The XENON collaboration is currently commissioning the XENON1T detector, soon to be the world’s most sensitive direct detection dark matter experiment, with the Nikhef group playing an important role in this work. The detector operates at the Gran Sasso underground laboratory and consists of a so-called dual-phase xenon time-projection chamber filled with 3500kg of ultra-pure xenon. Our group has an opening for a motivated MSc student to do data-analysis on this new detector. The work will consist of understanding the signals that come out of the detector and in particular focus on the so-called double scatter events. We are interested in developing methods in order to interpret the response of the detector better and are developing sophisticated statistical tools to do this. This work will include looking at data and developing new algorithms in our Python-based analysis tool.

Contact: Patrick Decowski

XAMS Dark Matter R&D Setup

The Amsterdam Dark Matter group has built an R&D xenon detector at Nikhef. The detector is a dual-phase xenon time-projection chamber and contains about 4kg of ultra-pure liquid xenon. We plan to use this detector for the development of new detection techniques (such as utilizing new photosensors) and to improve the understanding of the response of liquid xenon to various forms of radiation. The results could be directly used in the XENON experiment, the world’s most sensitive direct detection dark matter experiment at the Gran Sasso underground laboratory. We have several interesting projects for this facility. We are looking for someone who is interested in working in a laboratory on high-tech equipment, modifying the detector, taking data and analyzing the data him/herself. You will "own" this experiment.

Contact: Patrick Decowski

Personal tools