Difference between revisions of "Jupyterlab"
(Created page with "Jupyterlab is a popular interactive Python notebook manager. This service runs on a Stoomboot node with 64 cores and 512 GB memory. To use the service go to https://callysto....") |
|||
(14 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
Jupyterlab is a popular interactive Python notebook manager. This service runs on a Stoomboot node with 64 cores and 512 GB memory. | Jupyterlab is a popular interactive Python notebook manager. This service runs on a Stoomboot node with 64 cores and 512 GB memory. | ||
− | + | === Accessing the service === | |
− | + | Jupyterhub is available exclusively for Nikhef users. You have to be on the Nikhef network or use [[EduVPN]] to access the service. | |
− | + | To use it go to https://callysto.nikhef.nl/ and log on via Nikhef SSO. The notebook will run under your Nikhef account with full access to your home directory, project and data shares, and dCache. | |
− | + | ==== Setting up new environments ==== | |
− | + | ===== Using conda ===== | |
− | + | source /opt/tljh/user/etc/profile.d/conda.sh | |
− | + | conda create --name python38 python=3.8 | |
− | + | conda activate python38 | |
+ | conda install ipykernel | ||
+ | python -m ipykernel install --user --name python38 --display-name 'Python 3.8' | ||
+ | |||
+ | This creates a new conda environment in the directory <code>$HOME/.conda/envs/python38</code> and installs the jupyter kernel in <code>$HOME/.local/share/jupyter/kernels/python38</code>. | ||
+ | |||
+ | ===== Using conda in e.g. a shared project directory (work in progress) ===== | ||
+ | Add the new conda environments dir to your conda config, for example: | ||
+ | source /opt/tljh/user/etc/profile.d/conda.sh | ||
+ | conda config --append envs_dirs /project/myfirstproject/conda/envs | ||
+ | |||
+ | Check via | ||
+ | conda config --get envs_dirs | ||
+ | or the contents of | ||
+ | $HOME/.condarc | ||
+ | |||
+ | To create a new conda environment there, you need to specify the whole path: | ||
+ | source /opt/tljh/user/etc/profile.d/conda.sh | ||
+ | conda create --prefix /project/myfirstproject/conda/envs/shared_python38 python=3.8 | ||
+ | conda activate shared_python38 | ||
+ | conda install ipykernel | ||
+ | python -m ipykernel install --user --name shared_python38 --display-name 'Python 3.8 (shared)' | ||
+ | |||
+ | Note that the name given to the kernel can be (but doesn't have to be) different from the name of the conda environment. | ||
+ | |||
+ | ===== Using python venv ===== | ||
+ | python -m venv testing123 | ||
+ | source testing123/bin/activate | ||
+ | pip install ipykernel | ||
+ | python -m ipykernel install --user --name testing123 --display-name 'Testing 1,2,3' | ||
+ | |||
+ | This creates a new python venv in <code>$PWD/testing123</code> and installs the jupyter kernel in <code>$HOME/.local/share/jupyter/kernels/testing123</code>. | ||
+ | |||
+ | ==== List/remove/etc the kernel ==== | ||
+ | jupyter-kernelspec help | ||
+ | jupyter-kernelspec list | ||
+ | jupyter-kernelspec remove testing123 | ||
+ | |||
+ | ==== Removing environments ==== | ||
+ | |||
+ | * conda based: | ||
+ | conda env list | ||
+ | conda env remove -n python38 | ||
+ | * python venv based: remove the previously created testing123 python environment directory and its contents. | ||
+ | "rm -rf ${path_to_testing123}" |
Revision as of 18:29, 4 November 2021
Jupyterlab is a popular interactive Python notebook manager. This service runs on a Stoomboot node with 64 cores and 512 GB memory.
Accessing the service
Jupyterhub is available exclusively for Nikhef users. You have to be on the Nikhef network or use EduVPN to access the service.
To use it go to https://callysto.nikhef.nl/ and log on via Nikhef SSO. The notebook will run under your Nikhef account with full access to your home directory, project and data shares, and dCache.
Setting up new environments
Using conda
source /opt/tljh/user/etc/profile.d/conda.sh conda create --name python38 python=3.8 conda activate python38 conda install ipykernel python -m ipykernel install --user --name python38 --display-name 'Python 3.8'
This creates a new conda environment in the directory $HOME/.conda/envs/python38
and installs the jupyter kernel in $HOME/.local/share/jupyter/kernels/python38
.
Add the new conda environments dir to your conda config, for example:
source /opt/tljh/user/etc/profile.d/conda.sh conda config --append envs_dirs /project/myfirstproject/conda/envs
Check via
conda config --get envs_dirs
or the contents of
$HOME/.condarc
To create a new conda environment there, you need to specify the whole path:
source /opt/tljh/user/etc/profile.d/conda.sh conda create --prefix /project/myfirstproject/conda/envs/shared_python38 python=3.8 conda activate shared_python38 conda install ipykernel python -m ipykernel install --user --name shared_python38 --display-name 'Python 3.8 (shared)'
Note that the name given to the kernel can be (but doesn't have to be) different from the name of the conda environment.
Using python venv
python -m venv testing123 source testing123/bin/activate pip install ipykernel python -m ipykernel install --user --name testing123 --display-name 'Testing 1,2,3'
This creates a new python venv in $PWD/testing123
and installs the jupyter kernel in $HOME/.local/share/jupyter/kernels/testing123
.
List/remove/etc the kernel
jupyter-kernelspec help jupyter-kernelspec list jupyter-kernelspec remove testing123
Removing environments
- conda based:
conda env list conda env remove -n python38
- python venv based: remove the previously created testing123 python environment directory and its contents.
"rm -rf ${path_to_testing123}"